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Abstract.
More than thirty years ago Halbert White inaugurated a “model-

robust” form of statistical inference based on the “sandwich estimator”
of standard error. This estimator is known to be “heteroskedasticity-
consistent”, but it is less well-known to be “nonlinearity-consistent” as
well. Nonlinearity raises fundamental issues because regressors are no
longer ancillary, hence can’t be treated as fixed. As a result, (1) the
regressor distribution affects the parameters and (2) randomness of
the regressors conspires with the nonlinearity to become a source of
sampling variability in coefficient estimates. These effects generalize to
arbitrary types of regression where regressors have traditionally been
treated as ancillary. The generalizations result in a novel notion of mis-
specification and a re-interpretation of regression parameters as sta-
tistical functionals. The cost of a model-robust approach is that the
meaning of parameters needs to be rethought and inference needs to be
based on model-robust standard errors. For linear OLS, model-trusting
standard errors can deviate from “model-robust” standard errors by ar-
bitrary magnitudes. In practice, the two types of standard errors can
be compared with a diagnostic test.
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2 A. BUJA ET AL.

1. INTRODUCTION

Halbert White’s basic sandwich estimator of standard error for OLS can be de-
scribed as follows: In a linear model with regressor matrix XN×(p+1) and response
vector yN×1, start with the familiar derivation of the covariance matrix of the

OLS coefficient estimate β̂, but allow heteroskedasticity, V [y|X]=D diagonal:

(1) V [ β̂ |X] = V [(X ′X)−1X ′y] = (X ′X)−1(X ′DX)(X ′X)−1.

The right hand side has the characteristic “sandwich” form, (X ′X)−1 forming
the “bread” and X ′DX the “meat”. Although this sandwich formula does not
look actionable for standard error estimation because the variances Dii=σ2

i are
not known, White showed that (1) can be estimated asymptotically correctly. If
one estimates σ2

i by squared residuals r2
i , each r2

i is not a good estimate, but the
averaging implicit in the “meat” provides an asymptotically valid estimate:

(2) V̂sand[ β̂ ] := (X ′X)−1(X ′D̂X)(X ′X)−1,

where D̂ is diagonal with D̂ii = r2
i . Standard error estimates are obtained by

ŜEsand[ β̂j ] = V̂sand[ β̂ ]
1/2
jj . They are asymptotically valid even if the responses

are heteroskedastic, hence the term “Heteroskedasticity-Consistent Covariance
Matrix Estimator” in the title of one of White’s (1980b) famous articles.

Lesser known is the following deeper result in one of White’s (1980a, p. 162-3)
less widely read articles: the sandwich estimator of standard error is asymptoti-
cally correct even in the presence of nonlinearity:

(3) E[y |X] 6= Xβ for all β.

The term “heteroskedasticity-consistent” is an unfortunate choice as it obscures
the fact that the same estimator of standard error is also “nonlinearity-consistent”
when the regressors are random. Because of the relative obscurity of this impor-
tant fact we will pay considerable attention to its implications. In particular we
show how nonlinearity “conspires” with randomness of the regressors (1) to make
slopes dependent on the regressor distribution and (2) to generate sampling vari-
ability all of its own even in the absence of noise; see Figures 2 and 4 below. A
more striking illustration is available to users of the R Language by executing
the following line of code:

source("http://stat.wharton.upenn.edu/~buja/src-conspiracy-animation2.R")

Side remarks:

• The term “nonlinearity” is meant in the sense of (3), first order model
misspecification. A different meaning of “nonlinearity”, not intended here,
occurs when the regressor matrix X contains multiple columns that are
functions (polynomials, B-splines, ...) of an independent variable. We dis-
tinguish between “regressors” and “independent variables”: Multiple regres-
sors may be functions of the same independent variable.

• The sandwich estimator (2) is only the simplest version of its kind. Other
versions were examined, for example, by MacKinnon and White (1985) and
Long and Ervin (2000). Some forms are pervasive in Generalized Estimating
Equations (GEE; Liang and Zeger 1986; Diggle et al. 2002) and in the
Generalized Method of Moments (GMM; Hansen 1982; Hall 2005).
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MODELS AS APPROXIMATIONS 3

From the sandwich estimator (2), the usual model-trusting estimator is ob-
tained by collapsing the sandwich form assuming homoskedasticity:

V̂lin[ β̂ ] := (X ′X)−1σ̂2, σ̂2 = ‖r‖2/(N−p−1).

This yields finite-sample unbiased squared standard error estimators ŜE
2
lin[ β̂j ]=

V̂lin[ β̂ ]jj if the model is first and second order correct: E[y |X]=Xβ (linearity)
and V [y |X] = σ2IN (homoskedasticity). Assuming distributional correctness
(Gaussian errors), one obtains finite-sample correct tests and confidence intervals.

The analogous tests and confidence intervals based on the sandwich estimator
have only an asymptotic justification, but their asymptotic validity holds under
much weaker assumptions. In fact, it may rely on no more than the assumption
that the rows (yi, ~x

′
i) of the data matrix (y,X) are i.i.d. samples from a joint

multivariate distribution with finite moments to some order. Thus sandwich-
based theory provides asymptotically correct inference that is model-robust.
The question then arises what model-robust inference is about: When no model
is assumed, what are the parameters, and what is their meaning?

Answering these and related questions is a first goal of the present article. An
established answer is that parameters can be interpreted as statistical functionals
β(P ) defined on a large nonparametric class of joint distributions P = P (dy, d~x)
through best approximation (Section 3). The sandwich estimator produces then
asymptotically correct standard errors for the slope functionals βj(P ) (Section 7).
The question of the meaning of slopes in the presence of nonlinearity will be
answered with proposals involving case-wise and pairwise slopes (Section 9.2).

A second goal of this article is to discuss the role of the regressors when they
are random. Based on an ancillarity argument, model-trusting theory tends to
condition on the regressors and treat them as fixed. It will be shown, however, that
in a model-robust theory the ancillarity principle is generally violated: population
parameters depend on the distribution of the regressors (Section 5). In fact, we
will propose a generalized notion of well-specification for statistical functionals
based on the condition that regressor distributions do not affect them (Section 6).

A third goal of this article is to connect the sandwich estimator and the “x-y
bootstrap” which resamples observations (~x′i, yi). The better known “residual
bootstrap” resamples residuals ri. Theory exists for both (Freedman (1981) and
Mammen (1993), for example), but only the x-y bootstrap is model-robust and
solves the same problem as the sandwich estimator. Indeed, it will be shown that
the sandwich estimator is a limiting case of the x-y bootstrap (Section 8).

A fourth goal of this article is to practically (Section 2) and theoretically (Sec-
tion 9.3) compare model-robust and model-trusting estimators. We define a ratio
of asymptotic variances — “RAV ” for short — that describes the discrepancies
between the two standard errors in the asymptotic limit. If RAV 6=1, it is model-
robust estimators (sandwich or x-y bootstrap) that are asymptotically correct,
and the usual model-trusting standard error is indeed asymptotically incorrect.
The RAV can range from 0 to ∞ under scenarios that illustrate how model
deviations can invalidate the usual standard error.

A fifth goal is to estimate the RAV for use as a test statistic. We derive
an asymptotic null distribution to test for model deviations that invalidate the
usual standard error of a specific coefficient. The resulting “misspecification test”
differs from other such tests in that it answers the question of discrepancies
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4 A. BUJA ET AL.

among standard errors directly and separately for each coefficient (Section 9.4).
It should be noted that there are “misspecifications” that do not invalidate the
usual model-trusting standard error.

A final goal is to briefly discuss issues with the sandwich estimator: When the
model is well-specified, the sandwich estimator can be inefficient. We will addi-
tionally point out that it is also non-robust in the sense of sensitivity to outlying
observations. On this topic we will not have more to offer than suggestions.

The level of generality of treatment will vary. Greatest generality, at the level of
arbitrary statistical functionals, will apply to foundational topics such as targets
of estimation, regressor non-ancillarity, the meaning of mis/well-specification,
but also the connection between plug-in/sandwich estimators and x-y bootstrap.
Other topics, such as comparisons of model-trusting and model-robust standard
errors, will be developed only for linear OLS. The reason is that for these topics
the most lucid presentation relies on OLS regressor adjustment, which permits
reducing the analysis to one regression coefficient at a time.

Throughout we use precise notation for clarity, yet this article is not very
technical. The majority of results is elementary, not new, and stated without reg-
ularity conditions. Readers may browse the tables and figures and read associated
sections that seem most germane. Important notations are shown in boxes.

The idea that models are approximations and hence generally “misspecified”
to a degree has a long history, most famously expressed by Box (1979). We pre-
fer to quote Cox (1995): “it does not seem helpful just to say that all models
are wrong. The very word model implies simplification and idealization.” The
history of inference under misspecification can be traced to Cox (1961, 1962),
Eicker (1963), Berk(1966, 1970), Huber (1967), before being systematically elab-
orated by White in a series of articles (White 1980a, 1980b, 1981, 1982, among
others) and capped by a monograph (White 1994). More recently, a wide-ranging
discussion by Wasserman (2011) calls for “Low Assumptions, High Dimensions.”
A book by Davies (2014) elaborates the idea of adequate models for a given sam-
ple size. We, the present authors, got involved with this topic through our work
on post-selection inference (Berk et al. 2013) because the results of model selec-
tion should certainly not be assumed to be “correct.” We compared the obviously
model-robust standard errors of the x-y bootstrap with the usual ones of linear
models theory and found the discrepancies illustrated in Section 2. Attempting to
account for these discrepancies became the starting point of the present article.

2. DISCREPANCIES BETWEEN STANDARD ERRORS ILLUSTRATED

Table 1 shows regression results for a dataset consisting of a sample of 505
census tracts in Los Angeles that has been used to examine homelessness in
relation to covariates for demographics and building usage (Berk et al. 2008).
We do not intend a careful modeling exercise but show the raw results of linear
regression to illustrate the degree to which discrepancies can arise among three
types of standard errors: SElin from linear models theory, SEboot from the x-y
bootstrap (Nboot = 100, 000) and SEsand from the sandwich estimator (according
to MacKinnon and White’s (1985) HC2 proposal). Ratios of standard errors that
are far from +1 are shown in bold font.

The ratios SEsand/SEboot show that the sandwich and bootstrap estimators are
in good agreement. Not so for the linear models estimates: we have SEboot,SEsand >
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MODELS AS APPROXIMATIONS 5

β̂j SElin SEboot SEsand
SEboot
SElin

SEsand
SElin

SEsand
SEboot

tlin tboot tsand

Intercept 0.760 22.767 16.505 16.209 0.726 0.712 0.981 0.033 0.046 0.047

MedianInc ($K) -0.183 0.187 0.114 0.108 0.610 0.576 0.944 -0.977 -1.601 -1.696

PercVacant 4.629 0.901 1.385 1.363 1.531 1.513 0.988 5.140 3.341 3.396

PercMinority 0.123 0.176 0.165 0.164 0.937 0.932 0.995 0.701 0.748 0.752

PercResidential -0.050 0.171 0.112 0.111 0.653 0.646 0.988 -0.292 -0.446 -0.453

PercCommercial 0.737 0.273 0.390 0.397 1.438 1.454 1.011 2.700 1.892 1.857

PercIndustrial 0.905 0.321 0.577 0.592 1.801 1.843 1.023 2.818 1.570 1.529

Table 1
LA Homeless Data: Comparison of Standard Errors.

SElin for the regressors PercVacant, PercCommercial and PercIndustrial, and
SEboot,SEsand < SElin for Intercept, MedianInc ($1000), PercResidential.
Only for PercMinority is SElin off by less than 10% from SEboot and SEsand. The
discrepancies affect outcomes of some of the t-tests: Under linear models theory
the regressors PercCommercial and PercIndustrial have commanding t-values
of 2.700 and 2.818, respectively, which are reduced to unconvincing values below
1.9 and 1.6, respectively, if the x-y bootstrap or the sandwich estimator are used.
On the other hand, for MedianInc ($K) the t-value −0.977 from linear models
theory becomes borderline significant with the bootstrap or sandwich estimator
if the plausible one-sided alternative with negative sign is used.

A similar exercise with fewer discrepancies but still similar conclusions is shown
in Appendix A for the Boston Housing data.

Conclusions: (1) SEboot and SEsand are in substantial agreement; (2) SElin
on the one hand and {SEboot,SEsand} on the other hand can have substantial
discrepancies; (3) the discrepancies are specific to regressors.

3. THE POPULATION FRAMEWORK

3.1 Populations for Regression

As mentioned in the introduction, parameters of generative models will be rein-
terpreted as statistical functionals that are well-defined for a large nonparamet-
ric class of data distributions. In an assumption-lean, model-robust population
framework for regression with random regressors, the ingredients are regressor
random variables X1, ..., Xp and a response random variable Y . For now the
only assumption is that they have a joint distribution, written as

P = P (dy,dx1, ...,dxp).

For general considerations these random variables need not be quantitative; they
may be categorical, ordinal, censored, vector, ... . For specific models they will
be limited to grant identifiability of the parameters, as when linear models of
any kind require quantitative regressors with second moments and a full-rank
regressor covariance. In their case it is convenient to prepend a fixed regressor 1
to accommodate an intercept parameter. We may then write

~X = (1, X1, ..., Xp)
′.

for the column random vector consisting of the regressor variables, and ~x =
(1, x1, ..., xp)

′ for its values. We further write

P =P (dy,d~x), P (dy | ~x), P (d~x), or P =P
Y, ~X

, P
Y | ~X , P~X ,

imsart-sts ver. 2014/07/30 file: Buja_et_al_Conspiracy-v4.tex date: March 5, 2016



6 A. BUJA ET AL.

for, respectively, the joint distribution of (Y, ~X), the conditional distribution of
Y given ~X, and the marginal distribution of ~X.

In linear models with an intercept, the regressor distribution P~X is trivially
degenerate in IRp+1. There may arise nonlinear degeneracies if multiple regressors
are functions of one underlying independent variable, as in polynomial or B-spline
regression or product interactions. These cases of degeneracies are permitted as
long as E[ ~X ~X ′] remains full-rank.

3.2 Targets of Estimation 1: The Linear OLS Statistical Functional

For linear OLS we assume Y and all Xj quantitative. We write any function

f(X1, ..., Xp) of the regressors as f( ~X) because a prepended constant 1 is irrele-

vant. The following functions of ~X are special:

• The best L2(P ) approximation to Y , µ( ~X), is the conditional expecta-
tion of Y given ~X:

(4) µ( ~X) := argmin
f( ~X)∈L2(P )

E[(Y − f( ~X))2] = E[Y | ~X ] .

Also called the “response surface,” it is not assumed to be linear in ~X.

• The best population linear approximation to Y is l( ~X) = β′ ~X whose
coefficients β = β(P ) are given by

β(P ) := argminβ∈IRp+1 E[(Y −β′ ~X)2] = E[ ~X ~X ′]−1E[ ~XY ](5)

= argminβ∈IRp+1 E[(µ( ~X)−β′ ~X)2] = E[ ~X ~X ′]−1E[ ~Xµ( ~X) ](6)

The right hand expressions follow from the population normal equations:

(7) E[ ~X ~X ′]β −E[ ~XY ] = E[ ~X ~X ′]β −E[ ~Xµ( ~X)] = 0.

The population coefficients β = β(P ) form a vector statistical functional
defined for a large class of joint data distributions P =P

Y, ~X
.

3.3 Targets of Estimation 2: ML and MoM Statistical Functionals

A model-robust interpretation in terms of statistical functionals can be given
to large classes of regression methods for arbitrary variable types:

• Maximum likelihood (ML): Given a regression model p(y | ~x;θ) define a
statistical functional by minimization,

(8) θ(P ) = argminθEP [− log p(Y | ~X;θ)],

or by solving the associated moment conditions/estimating equations,

(9) EP [∂/∂θ log p(Y | ~X;θ)] = 0.

Under mild regularity conditions we have θ(P ) = θ0 if the actual condi-
tional data distribution P

Y | ~X has density p(y | ~x;θ0). The point is, however,

that θ(P ) is defined for a large class of data distributions outside of the
model p(y | ~x;θ). Models have here a two-fold role:

– To provide a heuristic for an objective function: L(θ; y, ~x) = − log p(y | ~x;θ).
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x

y

µ(x)
βTx

●

●

●
y

ε

η

δ

Error:

ε|x = y|x − µ(x)

Nonlinearity:

η(x) = µ(x) − βTx

Deviation from Linear:

δ|x = η(x) + ε|x

Fig 1. Illustration of the decomposition (13) for linear OLS.

– For the model p(y | ~x;θ) to act as an approximation to the actual con-
ditional data distribution P

Y | ~X (an early adopter being Kent (1982)).

• Generalizing further one may define statistical functionals from objective
functions L(θ; y, ~x) that are not necessarily negative log-likelihoods of a
model:

(10) θ(P ) = argminθEP [L(θ;Y, ~X)].

An example is conditional quantile estimation based on tilted L1 losses.
• Method of Moments (MoM): The minimization problem (10) is usually

solved in terms of stationarity conditions that amount to moment con-
ditions for ψ(θ; y, ~x) = ∂θL(θ;Y, ~X):

(11) EP [ψ(θ;Y, ~X)] = 0.

It is natural to generalize further and define statistical functionals as solu-
tions to moment conditions (11) where ψ(θ; y, ~x) may not be the gradient
of an objective function; in particular it need not be the score function of
a likelihood. A seminal work that inaugurated asymptotic theory for very
general moment conditions is by Huber (1967). For OLS, (11) specializes
to the normal equations (7) as the score function for the slopes is

(12) ψOLS(β; y, ~x)=~x~x′ β−~xy.

• An extension to situations where the number of moment conditions (the
dimension of ψ) is larger than the dimension of θ is provided by the Gen-
eralized Method of Moments (GMM, Hansen 1982) which can be used for
causal inference based on numerous instrumental variables.
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8 A. BUJA ET AL.

Moment conditions for clustered data with intra-cluster dependence are provided
by Generalized Estimating Equations (GEE, Liang and Zeger 1986). This, how-
ever, is a “fixed-X” approach that assumes well-specification of the mean function
while allowing misspecification of variance and intra-cluster dependence.

Just the same, it is evident that model-robust interpretations exist for many
regression methods. The point of view is to interpret regression parameters as
statistical functionals. Accordingly, some of the following discussions will involve
general statistical functionals θ = θ(P

Y, ~X
) in the context of the special structure

afforded by the distinction between response and regressor variables.

4. THE NOISE-NONLINEARITY DECOMPOSITION FOR LINEAR OLS

First, we briefly treat linear OLS for its explicit formulas used throughout for
illustration. The response Y has the following decompositions:

(13)

Y = β′ ~X + (µ( ~X)− β′ ~X)︸ ︷︷ ︸+ (Y − µ( ~X))︸ ︷︷ ︸
= β′ ~X + η( ~X) + ε︸ ︷︷ ︸
= β′ ~X + δ

We call ε the noise and η the nonlinearity, while for δ there is no standard term,
but “population residual” may suffice; see Table 2. Important to note is that
(13) is a decomposition; it makes no model assumptions on δ or ε. In a model-
robust framework with random regressors there is no notion of “error term” in
the usual sense; its place is taken by the population residual δ which satisfies few
of the usual assumptions made in generative models. It naturally decomposes into
a systematic component, the nonlinearity η( ~X), and a random component, the

noise ε. In model-trusting linear modeling, one assumes η( ~X)
P
= 0 and ε to have

the same ~X-conditional distribution in all of predictor space, that is, ε is assumed
independent of ~X if the latter is treated as random. No such assumptions are
made here. What is left are orthogonality conditions satisfied by η and ε in relation
to ~X. If we call independence “strong-sense orthogonality”, we have instead

(14)
weak-sense orthogonality: η ⊥ ~X (E[η ·Xj ] = 0 ∀j=0, 1, ..., p),

medium-sense orthogonality: ε ⊥ L2(P~X) (E[ε·f(~X)] = 0 ∀f ∈L2(P~X)).

These are not assumptions but consequences of population OLS and the defini-
tions. Because of the inclusion of an intercept (j=0 and f=1, respectively), both
the nonlinearity and noise are marginally centered: E[η] = E[ε] = 0. Importantly,
it also follows that ε ⊥ η( ~X) because η is just some f ∈L2(P~X).

In what follows we will need some natural definitions:

• Conditional noise variance: The noise ε, not assumed homoskedastic,
can have arbitrary conditional distributions P (dε| ~X = ~x) for different ~x
except for conditional centering and existing conditional variances. Define:

(15) σ2( ~X) := V [ ε | ~X] = E[ ε2 | ~X]
P
< ∞.
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MODELS AS APPROXIMATIONS 9

η = µ( ~X)− β′ ~X = η( ~X), nonlinearity,

ε = Y− µ( ~X), noise,

δ = Y−β′ ~X = η + ε, population residual,

µ( ~X) = β′ ~X + η( ~X) response surface,

Y = β′ ~X + η( ~X) + ε = β′ ~X + δ response.

Table 2
Random variables and their canonical decompositions.

• Conditional mean squared error: This is the conditional MSE for Y
w.r.t. the population linear approximation β′ ~X. Its definition and bias-
variance decomposition are:

(16) m2( ~X) := E[ δ2 | ~X] = η2( ~X) + σ2( ~X).

The decomposition follows from δ=η+ε and ε ⊥ η( ~X) due to (14).

• Marginal Noise Variance: Averaging m2( ~X), η2( ~X) and σ2( ~X) we
could define three second order functionals of P , but among them we will
only need the marginal noise variance:

(17) σ2(P ) := E[σ2( ~X) ] = E[ ε2 ].

5. NON-ANCILLARITY OF THE REGRESSOR DISTRIBUTION

In this section we use linear models for illustration, but the effects are general.
Section 6 will describe generalizations to arbitrary statistical functionals.

5.1 The Breakdown of the Ancillarity Argument under Misspecification

Conditioning on the regressors when they are random has historically been
justified with the ancillarity principle. The argument applies to any regression
model rendered in the following form:

p(y, ~x; θ) = p(y | ~x; θ) p(~x),

referring to model densities of P~X,Y
, P

Y | ~X and P~X , respectively, where θ is the

parameter in the traditional meaning of a parametric model. While θ is the pa-
rameter of interest, the regressor density p(~x) acts as a “nonparametric nuisance
parameter.” Ancillarity of p(~x) in relation to θ is immediately recognized by
forming likelihood ratios p(y, ~x; θ1)/p(y, ~x; θ2) = p(y | ~x; θ1)/p(y | ~x; θ2) which
are free of p(~x). (For a fuller definition of ancillarity see Appendix B.) This logic
is valid if the conditional model p(y | ~x; θ) is correct. The following proposition
describes for linear models the ways in which ancillarity is broken if the model is
an approximation and the parameters are statistical functionals:

Proposition 5.1: Breaking Regressor Ancillarity in linear OLS

• Considering distributions P = P
Y, ~X

that share the function µ(~x) as con-

ditional expectation of the response, the functional β(P ) depends on the
regressor distribution P~X if and only if µ(~x) is nonlinear.
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10 A. BUJA ET AL.

X

Y

Y = µ(X)

X

Y

Y = µ(X)

Fig 2. Illustration of the dependence of the population OLS solution on the marginal distribution
of the regressors: The left figure shows dependence in the presence of nonlinearity; the right figure
shows independence in the presence of linearity.

• Considering distributions P =P
Y, ~X

that share the function σ2(~x) as condi-

tional variance of the response, the functional σ2(P ) depends on the regres-
sor distribution P~X if and only if σ2(~x) is non-constant (heteroskedastic).

(These are loose statements; see Appendix D.1 for more precision.) The first part
of the proposition is best explained graphically: Figure 2 shows single regressor
situations with a nonlinear and a linear mean function, respectively, and the same
two regressor distributions. The two population OLS lines for the two regressor
distributions differ in the nonlinear case and they are identical in the linear case.
(See also White (1980a, p. 155f); identify his g(Z) + ε with our Y .)

Ancillarity of regressors is sometimes informally explained as the regressor
distribution being independent of, or unaffected by, the parameters of interest.
From the present point of view where parameters are not labels for distributions
but rather statistical functionals, this phrasing has things upside down: It is not
the parameters that affect the regressor distribution; it is the regressor distribution
that affects the parameters.

5.2 Implications of the Dependence of Slopes on Regressor Distributions

A first practical implication, illustrated by Figure 2, is that two empirical
studies that use the same regressors, the same response, and the same model,
may yet estimate different parameter values, β(P1) 6=β(P2). What may seem to
be superficially contradictory inferences from the two studies may be compatible
if (1) the true response surface µ(~x) is not linear and (2) the regressors’ high-
density regions differ between studies. Differences in regressor distributions can
become increasingly complex for larger regressor dimensions or, worse, as p→∞.
Differences in estimated parameter values often become visible in meta-analyses
and are labeled “parameter heterogeneity.” The source of this heterogeneity may
be differences in regressor distributions combined with model misspecification.
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X

Y Y = µ(X)

P2(dx)

P1(dx)

Fig 3. Illustration of the interplay between regressors’ high-density range and nonlinearity: Over
the small range of P1 the nonlinearity will be undetectable and immaterial for realistic sample
sizes, whereas over the extended range of P2 the nonlinearity is more likely to be detectable and
relevant.

A second practical implication, illustrated by Figure 3, is that misspecification
is a function of the regressor range: Over a narrow range a model has a better
chance of appearing “well-specified” because approximations work better over
narrow ranges. In the figure the narrow range of the regressor distribution P1(d~x)
is the reason why the linear approximation is excellent, hence the model very
nearly well-specified, whereas the wide range of P2(d~x) is the reason for the
gross misspecification of the linear approximation. This is a general issue that
holds even in the most successful theories, those of physics, which at this point
in history have limited ranges of validity as well.

6. REGRESSOR ANCILLARITY AS THE BASIS FOR A NOTION OF
WELL-SPECIFICATION OF STATISTICAL FUNCTIONALS

The discussions of the previous section suggest generalizations to arbitrary
functionals in regressions with arbitrary data types. We will take Proposition 5 as
a guide: from the “only if” parts of its statements we infer that well-specification
can be characterized by the condition that statistical functionals be independent
of the regressor distribution. For slope functionals, well-specification in this sense
implies that the conditional expectation of the response is a linear function of
the regressors (linearity), and for the noise variance functional it implies that the
conditional variance of the response is constant across the regressor range (ho-
moskedasticity). The condition that a functional be independent of the regressor
distribution, however, is so completely non-specific that it lends itself as a defi-
nition of well-specification for arbitrary statistical functionals in arbitrary types
of regressions.
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12 A. BUJA ET AL.

Beyond Proposition 5 this definition can be further supported by the following
general heuristic argument: A statistical functional, in the context of regression,
ideally measures aspects of the association between Y and ~X only, not aspects of
the marginal distribution of ~X. Therefore, ideally, a statistical functional should
not depend on the marginal ~X distribution.

It is important to view such a definition as stating an ideal, not the reality
in most data analyses, but ideals are useful because they spell out the circum-
stances under which intentions are perfectly realized. Here the intention is that
measurements of aspects of the Y - ~X association be independent of where the
measurements are taken, that is, independent of the ~X distribution. This inten-
tion is not realized for slope functionals when the true conditional response mean
µ(~x) is nonlinear; in this case a linear fit will result in larger slopes when the ~X
distribution concentrates in locations where the gradient of µ(~x) is steeper.

The definition proposed here can be interpreted as shifting the concept of re-
gressor ancillarity from models to statistical functionals and using it as the basis
for a novel concept of well-specification. This makes sense in light of a comment
made by a reviewer of this article who characterized ancillarity as “an example
of how much of classic parametric statistics (including concepts such as ancillar-
ity, sufficiency, invariance, exact pivotal quantities) developed up to about 1960
mostly assumes correctness of the working model. This is of less (some might
say no) relevance when the correctness of a model is not assumed.” Yet, there is
value in leveraging an “outmoded” concept to characterize the ideal circumstances
for measuring aspects of a Y - ~X association. For one thing, well-specification of
statistical functionals holds for much larger classes of data distributions than
those contained in traditionally assumed models. For example, slope functionals
are well-specified iff the conditional response mean is a linear function of the
regressors — a property which characterizes a large nonparametric class of dis-
tributions much beyond linear models with their additional assumptions such as
homoskedasticity and Gaussianity.

In what follows we will give precision to the notion of well-specification for
statistical functionals. If θ(P ) is a statistical functional defined for a joint distri-
bution P =P

Y, ~X
, we may decompose P

Y, ~X
into two components: the conditional

response distribution P
Y | ~X and the marginal regressor distribution P~X . In gen-

eral, conditional distributions are defined only almost surely w.r.t. P~X , but for
technical reasons we will assume that ~x 7→ P

Y | ~X=~x
is a Markov kernel defined

for all ~x ∈ X , where X = supp(P~X) is the (topologically closed) support of the
regressor distribution. We can then write

(18) θ(P
Y, ~X

) = θ(P
Y | ~X ,P ~X

).

Definition: The statistical functional θ(P ) is well-specified for P =P
Y, ~X

if

θ(P
Y | ~X ,P~X) = θ(P

Y | ~X , P̃~X)

for all permissible regressor distributions P̃~X with supp(P̃~X) ⊂ supp(P~X).

We added the term “permissible” to account for exclusions such as perfectly
collinear regressor distributions in linear fitting.

We turn next to special cases and general implications:
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MODELS AS APPROXIMATIONS 13

• The definition divorces the notion of well-specification from statistical mod-
els and makes it a relational property between conditional response distribu-
tions, P

Y | ~X , and quantities of interest, θ. Parametric models are replaced

by large nonparametric sets of conditional distributions associated with a
statistical functional θ(P ):

Pθ := {P
Y | ~X |θ is well-defined for P

Y, ~X
}.

(Again we assume P
Y | ~X=~x

to be actual Markov kernels defined for all ~x.)

For the slope functional β(P ) of linear OLS, this would be the set of condi-
tional distributions (Markov kernels) for which the conditional expectation
is linear in ~X: E[Y | ~X] = β(P )′ ~X.
• If the statistical functional θ is the population version of an ML estimator

for a particular regression model as described in Section 3.3, the functional
will be well-specified for the distributions in this model in the sense of the
above definition: if P

Y | ~X=~x
has conditional density p(y | ~x;θ0), then

EP [− log p(Y | ~X;θ0) | ~X=~x] = min
θ
EP [− log p(Y | ~X;θ) | ~X=~x].

This holds conditionally on ~X = ~x, hence it holds marginally irrespective
of P ~X

. (Minimizing the r.h.s. is generally highly non-unique; e.g., in linear
OLS there exist many linear functions through (~x,E[Y |X= ~x)]).)
• Similar arguments apply to non-ML functionals such as quantile regressions.

A linear quantile regression, for example, is well-specified if the conditional
response quantiles follow a linear function of ~X, meaning that the values
of the linear function minimize the associated tilted L1 loss integrated over
Y at all ~X=~x, making again the marginal distribution of ~X irrelevant.
• Independence of the regressor distribution implies that if the joint distri-

bution is reweighted with a function of the regressors, P̃
Y, ~X

= ω( ~X)P
Y, ~X

where ω( ~X) ≥ 0 andEP [ω( ~X)] = 1, then the conditional response distribu-
tion is unchanged, P̃

Y | ~X = P
Y | ~X , whereas the marginal regressor distribu-

tion absorbes the reweighting, P̃ ~X
= ω( ~X)P ~X

. For a statistical functional

θ that is well-specified for P
Y, ~X

, we therefore have θ(P̃
Y, ~X

) = θ(P
Y, ~X

).
This idea leads to misspecification tests based on reweighting of the data as
explored by White (1980a, Section 4) for linear OLS. The idea generalizes
to arbitrary statistical functionals and arbitrary data types.
• From the previous point follows that functionals that are well-specified for a

particular conditional response distribution allow consistent estimation un-
der arbitrary regressor-dependent reweighting of the data. This knowledge
is implicit in much of model-trusting theory and methodology.
• The idea of regressor-dependent reweighting points toward smoothing with

Parzen kernels in order to localize the statistical functional as a diagnostic
for well-specification. Smoothing, of course, is a technology in its own right
comprising the whole literature of nonparametric function estimation.

7. OBSERVATIONAL DATASETS, ESTIMATION, AND CLTS

We turn from populations to estimation from i.i.d. data. We sacrifice the
generality that is common in econometrics and trade it for simplicity. White
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14 A. BUJA ET AL.

β = (β0, β1, ..., βp)′, parameter vector ((p+ 1)×1)

Y = (Y1, ..., YN )′, response vector (N×1)

Xj = (X1,j , ..., XN,j)
′, j’th regressor vector (N×1)

X = [1,X1, ...,Xp] =



~X1
′

.....

.....

~XN
′


,

regressor matrix

with intercept
(N×(p+ 1))

µ = (µ1, ..., µN )′, µi = µ( ~Xi) = E[Y | ~Xi], conditional means (N×1)

η = (η1, ..., ηN )′, ηi = η( ~Xi) = µi − β′ ~Xi, nonlinearities (N×1)

ε = (ε1, ..., εN )′, εi = Yi − µi, noise values (N×1)

δ = (δ1, ..., δN )′, δi = ηi + εi, population residuals (N×1)

σ = (σ1, ..., σN )′, σi = σ( ~Xi) = V [Y | ~Xi]
1/2, conditional sdevs (N×1)

β̂ = (β̂0, β̂1, ..., β̂p)′ = (X ′X)−1X ′Y , parameter estimates ((p+ 1)×1)

r = (r1, ..., rN )′ = Y −Xβ̂, sample residuals (N×1)

Table 3
Random variable notation for i.i.d. observational data.

(1980b), for example, assumes observations to be “independent not (necessar-
ily) identically distributed”, and Hansen (1982) assumes them stationary and
ergodic. White’s (1994) monograph includes “dynamic misspecification” for time
series aspects of the data. We limit ourselves to i.i.d. observations (Yi, ~Xi

′) =
(Yi, Xi,1, ..., Xi,p) (i = 1, 2, ..., N) drawn from a multivariate distribution
P (dy,dx1, ...,dxp), and we stack them to matrices and vectors as in Table 3.

7.1 Estimation for Linear OLS

The population versions of nonlinearities η, noise ε, and population residuals
δ translate to random N -vectors as follows (again, see Table 3):

η = µ−Xβ, ε = Y −µ, δ = Y −Xβ = η + ε.(19)

It is important to distinguish between population and sample properties: The
vectors δ, ε and η are not orthogonal to the regressor columns Xj in the sample.
Writing 〈·, ·〉 for the usual Euclidean inner product on IRN , we have in general

〈δ,Xj〉 6= 0, 〈ε,Xj〉 6= 0, 〈η,Xj〉 6= 0,

even though the associated random variables are orthogonal to Xj in the popu-

lation: E[ δXj ]=0, E[ εXj ]=0, E[ η( ~X)Xj ]=0, according to (14).

The OLS estimate of β is as usual

(20) β̂ = argminβ̃ ‖Y −Xβ̃‖
2 = (X ′X)−1X ′Y .

Because we are not conditioning on X, randomness of β̂ stems from Y as well
as X. The sample residual vector r = Y −Xβ̂, which arises from β̂, is distinct
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MODELS AS APPROXIMATIONS 15

from the population residual vector δ = Y −Xβ, which arises from β = β(P ).
If we write P̂ for the empirical distribution of the N observations (Yi, ~Xi

′), then
β̂ = β(P̂ ) is the plug-in estimate.

7.2 Decomposition of OLS Estimates According to Noise and Nonlinearity

In X-conditional linear models theory, the target of estimation β(X) is what
we may call the “conditional parameter”:

β(X) := argminβE[ ‖Y −Xβ‖2 |X ] = (X ′X)−1X ′µ = E[ β̂ |X ].

Unconditionally, β(X) is a random variable, hence is generally not the target of
estimation, which is β(P ) in a random-X theory. We will analyze the relationship
between β̂ = β(P̂ ), β(X) and β(P ), and show that the unconditional true
standard error permits a Pythagorean decomposition into contributions due to
noise and nonlinearity, both of order 1/

√
N , according to

(21) β̂ − β = (β̂ − β(X)) + (β(X)− β).

Definition and Lemma 7.2: Define “Estimation Offsets” (EOs) as follows:

(22)

Total EO := β̂ − β = (X ′X)−1X ′δ,

Noise EO := β̂ − β(X) = (X ′X)−1X ′ε,

Approximation EO := β(X)− β = (X ′X)−1X ′η.

The right hand equalities follow from the decompositions (19), ε = Y−µ, η =
µ−Xβ, δ=Y−Xβ, and these facts:

β̂ = (X ′X)−1X ′Y , E[ β̂ |X] = (X ′X)−1X ′µ, β = (X ′X)−1X ′(Xβ).

The first defines β̂, the second uses E[Y |X] = µ, and the third is a tautology.

7.3 Generalization of the Decomposition to Statistical Functionals

The three EOs can be generalized. Starting with MoM estimators, the moment
conditions that define θ, θ(X) and θ̂ are, respectively:

(23)

θ = θ(P ) : E[ψ(θ;Y, ~X) ] = 0,

θ(X) : 1
N

∑
iE[ψ(θ;Yi, ~Xi) | ~Xi] = 0,

θ̂ = θ(P̂ ) : 1
N

∑
iψ(θ;Yi, ~Xi) = 0.

These specialize to linear OLS for ψOLS(β; y, ~x) in (12). — The generalization
to arbitrary statistical functionals is as follows, using the notation of (18):

(24)

θ = θ(P ) = θ(P
Y | ~X ,P ~X

),

θ(X) = θ(P
Y | ~X , P̂ ~X

),

θ̂ = θ(P̂ ).
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Fig 4. Noise-less Response: The filled and the open circles represent two “datasets” from the
same population. The x-values are random; the y-values are a deterministic function of x: y =
µ(x) (shown in gray).
Left: The true response µ(x) is nonlinear; the open and the filled circles have different OLS lines
(shown in black). Right: The true response µ(x) is linear; the open and the filled circles have the
same OLS line (black on top of gray).

The centerpiece is the definition of θ(X), which is the X-conditional “parame-
ter” that integrates the conditional response distribution but conditions on the
observed regressors as collected in the regressor matrix X (permitting in this
generality arbitrary variable types). The observed regressor data are represented
by the empirical regressor distribution P̂ ~X

= (1/N)
∑
δ ~Xi

(where δ ~Xi
denotes

a point mass at ~Xi, in deviation from the meaning of δ elsewhere as population
residual). Estimation offsets can now be defined in full generality:

(25)

Total EO := θ̂ − θ,

Noise EO := θ̂ − θ(X),

Approximation EO := θ(X)− θ.

The target of estimation in model-trusting theories is θ(X), while in model-robust
theories it is θ(P ).

7.4 Random X and Misspecification as a Source of Sampling Variation

The following observation further validates the definition of well-specification
given in Section 6:

Lemma 7.4: If the statistical functional θ is well-specified for P
Y | ~X , then the

conditional parameter θ(X) agrees with the unconditional parameter θ(P ):

θ(X)
P
= θ(P ).

Proof: θ(X) = θ(P
Y | ~X , P̂ ~X

) = θ(P
Y | ~X) = θ(P ) due to well-specification in

the sense of Section 6. �
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If, however, there is misspecification, then θ(X) becomes a random variable
with genuine sampling variability. For this to occur, both randomness of X and
misspecification need to be present — the “conspiracy” in the title of the arti-
cle. The full variability of θ̂ is then no longer due to the conditional response
distribution P

Y | ~X alone.

This fact is best illustrated with the example of a misspecified deterministic
response, where Y = µ( ~X) (that is, P

Y | ~X = δ
µ( ~X)

are point masses) for some

non-linear function. This is shown in the left hand frame of Figure 4 for a single
regressor, with OLS lines fitted to two “datasets” consisting of N = 5 regressor
values each. The randomness in the regressors causes the fitted line to exhibit
sampling variability due to the nonlinearity of the response. This effect is absent
for a linear response (well-specification) shown in the right hand frame.

A comparison with Figure 2 illustrates the fact that the effect is the same
in both, shown for different regressor populations in Figure 2 and for different
datasets in Figure 4, corroborating the one-line proof of Lemma 7.4. Thus mis-
specification has two fundamental effects: (1) the population parameter β(P )
becomes dependent on the regressor distribution, and (2) the “conditional pa-
rameter” θ(X) exhibits sampling variability.

The effect is of course of a very general nature, not limited to linear functions
fitted to nonlinear curves. It also takes place, for example, if one fits continuous
functions to discontinuous response functions, or smooth functions to non-smooth
response functions, or additive functions to interaction response functions.

Fixed-X theories of regression that condition on the regressors, such as lin-
ear models theory, necessarily assume well-specification in the sense of Section 6.
Their only source of sampling variability is the noise EO θ̂−θ(X). The “rem-
edy” of fixed-X theories is to call for model diagnostics and declare a model and
its inferences to be invalid if misspecification is detected. If there exist misspec-
ifications that cause θ(X)−θ 6= 0 but remain undetected in a particular data
analysis, they will be erroneously treated as arising from noise, and statistical
inference may consequently be invalidated (Section 9.3.4). This mistreatment oc-
curs also in the residual bootstrap which assumes the residuals to originate from
exchangeable noise. Asymptotically correct treatment is provided by the sand-
wich estimator and the x-y bootstrap, even in noise-free misspecified situations.
The justifications derive from central limit theorems to be described next.

7.5 Model-Robust Central Limit Theorems

For a well-behaved statistical functional θ(P ) that has an influence function
ICθ,P (y, ~x) (Hampel et al. 1986), the EOs have the following CLTs:

(26)

√
N (θ̂ − θ)

D−→ N
(
0, V [ICθ,P (Y, ~X)]

)
,

√
N (θ̂ − θ(X))

D−→ N
(
0, E[V [ICθ,P (Y, ~X) | ~X]]

)
,

√
N (θ̂(X)− θ)

D−→ N
(
0, V [E[ICθ,P (Y, ~X) | ~X]]

)
.

The asymptotic variances of the EOs naturally follow the identity

V [ICθ,P (Y, ~X)] = E[V [ICθ,P (Y, ~X) | ~X] ] + V [E[ICθ,P (Y, ~X) | ~X] ],
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18 A. BUJA ET AL.

the three terms corresponding to total, noise and approximation EO, respectively.
For moment estimators the influence function can be derived from the moment

condition EP [ψ(Y, ~X;θ)] = 0 (Section 3.3):

ICθ,P (y, ~x) = Λ(θ)−1ψ(θ; y, ~x)) ,

where Λ(θ) := ∂θE[ψ(θ;Y, ~X)] is a Jacobian of size q×q, q= dim(ψ) = dim(θ).
Asymptotic normality of the total EO is Huber’s (1967) result. The asymptotic
variance of the total EO has the following sandwich form:

(27) AV [θ,P ] = Λ(θ)−1 V [ψ(θ;Y, ~X)] Λ(θ)′−1.

Linear OLS has ICβ,P (y, ~x) = E[ ~X ~X ′]−1(~x~x′β−~xy), and hence the following
CLTs for the EOs:

(28)

√
N (β̂ − β)

D−→ N
(
0,E[ ~X ~X ′]−1E[m2( ~X) ~X ~X ′] E[ ~X ~X ′]−1

)
√
N (β̂ − β(X))

D−→ N
(
0,E[ ~X ~X ′]−1E[σ2( ~X) ~X ~X ′] E[ ~X ~X ′]−1

)
√
N (β(X)− β)

D−→ N
(
0,E[ ~X ~X ′]−1E[ η2( ~X) ~X ~X ′] E[ ~X ~X ′]−1

)
According to (15) and (16), m2( ~X) can be replaced by δ2 and σ2( ~X) by ε2:

(29) E[m2( ~X) ~X ~X ′] = E[ δ2 ~X ~X ′], E[σ2( ~X) ~X ~X ′] = E[ ε2 ~X ~X ′].

The asymptotic variance of linear OLS can therefore be written as

(30) AV [β,P ] = E[ ~X ~X ′]−1E[ δ2 ~X ~X ′]E[ ~X ~X ′]−1 .

Special cases covered by these CLTs are as follows:

• First order well-specification: η( ~X)
P
= 0. The sandwich form is solely

due to heteroskedasticity.

• Deterministic nonlinear response: σ2( ~X)
P
= 0. The sandwich form is

solely due to the nonlinearity and randomness of X.

• First and second order well-specification: η( ~X)
P
= 0, σ2( ~X)

P
= σ2(P ).

The non-sandwich form is asymptotically valid without Gaussian errors.

8. SANDWICH ESTIMATORS AND THE M -OF-N BOOTSTRAP

Empirically one observes that standard error estimates obtained from the x-y
bootstrap and from the sandwich estimator are generally close to each other. This
is intuitively unsurprising as they both estimate the same asymptotic variance,
that of the first CLT in Proposition 7.5. A closer connection between them will
be established here.
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8.1 The Plug-In Sandwich Estimator of Asymptotic Variance

Plug-in estimators of standard error are obtained by substituting the empirical
distribution P̂ for the true P in formulas for asymptotic variances (26):

(31) ÂV [ θ̂ ] = AV [θ, P̂ ], ŜE[θ̂j ] :=
1

N1/2
(ÂV[ θ̂ ])

1/2
jj .

These are asymptotically consistent under mild conditions.
For MoM-estimators (31) specializes to the following sandwich form, using (27)

and writing Ê[...] and V̂ [...] for sample means and sample variance/covariances
over (Yi, ~Xi) (i = 1, ..., N):

(32) ÂV [ θ̂ ] := Λ̂
−1
V̂ [ψ(θ̂;Y, ~X)] Λ̂′

−1
, where Λ̂ := Ê[ ∂θ ψ(θ̂;Y, ~X)].

The OLS sandwich estimator is the plug-in version of (30) where δ2 is replaced
by residuals, summarized in a diagonal matrix D(r)2 with squared residuals
r2
i = (Yi− ~Xiβ̂)2 in the diagonal, and

Ê[ ~X ~X ′] = 1
N (X ′X), Ê[ r2 ~X ~X ′] = 1

N (X ′D(r)2X).

The original sandwich estimator for linear OLS (White 1980a) can be written as

(33)
ÂVsand[ β̂ ] := Ê[ ~X ~X ′]−1 Ê[ r2 ~X ~X ′] Ê[ ~X ~X ′]−1

= N (X ′X)−1 (X ′D(r)2X) (X ′X)−1

This is version “HC” in MacKinnon and White (1985). A modification accounts
for the fact that residuals have smaller variance than noise, calling for a correction
by replacing 1/N1/2 in (31) with 1/(N−p−1)1/2, in analogy to the linear models
estimator (“HC1” ibid.). Another modification is to correct individual residuals
for their reduced variance according to V [ri|X] = σ2(1−Hii) under homoskedas-
ticity and ignoring nonlinearity (“HC2” ibid.). Further modifications include a
version based on the jackknife (“HC3” ibid.) using leave-one-out residuals.

8.2 The M -of-N Bootstrap Estimator of Asymptotic Variance

An alternative to plug-in is estimating asymptotic variance with the x-y boot-
strap. To link plug-in and bootstrap estimators we need the M -of-N bootstrap
where the resample size M may differ from the sample size N . One distinguishes

• M -of-N resampling with replacement from
• M -out-of-N subsampling without replacement.

In resampling, M can be any M<∞; in subsampling, M must satisfy M<N . The
M -of-N bootstrap for M�N “works” more often than the conventional N -of-N
bootstrap; see Bickel, Götze and van Zwet (1997) who showed that the favorable
properties of M�N subsampling obtained by Politis and Romano (1994) carry
over to the M�N bootstrap. Ours is a well behaved context, hence there is no
need for M�N ; instead, we consider bootstrap resampling for the extreme case
M�N , namely, the limit M →∞.

The crucial observation is as follows: Because resampling is i.i.d. sampling
from some distribution, there holds a CLT as the resample size grows, M →
∞. It is immaterial that, in this case, the sampled distribution is the empirical
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distribution P̂ = P̂N of a given dataset {(Yi, ~Xi)}i=1...N , which is frozen of size
N as M →∞. The following holds for bootstrap resampling of any well-behaved
statistical functional, be it in a regression context or not:

Proposition 8.2: For any fixed dataset of size N , represented by P̂N , if θ is
asymptotically normal, there holds a CLT for the M -of-N bootstrap as M →∞,
with an asymptotic variance obtained by plug-in. Letting θ∗ = θ(P ∗) where P ∗

represents a resample of size M from P̂N , we have:

(34) M1/2 (θ∗ − θ̂)
D−→ N

(
0, AV [θ, P̂N ]

)
(M →∞, N fixed).

No proof is needed. We immediately have the following:

Corollary 8.2: The sandwich estimators (32) and (33) for MoM and OLS es-
timators are the asymptotic variance estimated by the M -of-N bootstrap in the
limit M→∞ for a fixed sample of size N .

The sandwich estimators have the advantage that they result in unique stan-
dard error values whereas bootstrap standard errors have simulation error in
practice. On the other hand, the x-y bootstrap is more flexible because the boot-
strap distribution can be used to generate confidence intervals that are second
order correct (see, e.g., Efron and Tibshirani 1994; Hall 1992).

For further connections see MacKinnon and White (1985): Some forms of sand-
wich estimators were independently derived by Efron (1982, p. 18f) using the in-
finitesimal jackknife, and by Hinkley (1977) using a “weighted jackknife.” See We-
ber (1986) for a concise comparison in the linear model limited to heteroskedasti-
city. A deep connection between jackknife and bootstrap is given by Wu (1986).

9. INSIGHTS FROM LINEAR OLS

The following long section will use the special structure of OLS to make points
that are generalizable in principle but best explained in a simple context: the
meaning of regression slopes in the presence of nonlinearity (= misspecification
for slopes), an asymptotic comparison of model-trusting and model-robust stan-
dard errors, scenarios of misspecification that affect the ratio of the two kinds of
asymptotic variances, and finally a test for the discrepancy between them.

9.1 Adjusted Regressors

The following adjustment formulas are standard but will be stated explicitly
due to their importance in what follows. They express the slopes of multiple
regressions as slopes of simple regressions using adjusted single regressors. The
formulas will be used for the interpretation of regression slopes in the presence of
nonlinearity (Section 9.2), the analysis of discrepancies between asymptotically
proper and improper standard errors (Section 9.3), and a test of discrepancy
between the two (Section 9.4). [See Appendix C for more notational details.]

• Adjustment in Populations: The population-adjusted regressor random
variable Xj• is the “residual” of the population regression of Xj , used as the
response, on all other regressors. The response Y can be adjusted similarly,
and we may denote it by Y•−j to indicate that Xj is not among the ad-
justors, which is implicit in the adjustment of Xj . The multiple regression
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coefficient βj = βj(P ) of the population regression of Y on ~X is obtained
as the simple regression through the origin of Y or Y•−j on Xj•:

(35) βj =
E[Y•−jXj•]

E[X 2
j•]

=
E[Y Xj•]

E[X 2
j•]

=
E[µ( ~X)Xj•]

E[X 2
j•]

.

The rightmost representation holds because Xj• is a function of ~X only

which permits conditioning Y on ~X in the numerator.

• Adjustment in Samples: Define the sample-adjusted regressor column
Xj•̂ to be the residual vector of the sample regression of Xj , used as the
response vector, on all other regressors. The response vector Y can be
sample-adjusted similarly, and we may denote it by Y•̂−j to indicate that
Xj is not among the adjustors, which is implicit for Xj•. (Note the use of
hat notation “ •̂ ” to distinguish it from population-based adjustment “•”.)
The coefficient estimate β̂j of the multiple regression of Y on X is obtained
as the simple regression through the origin of Y or Y•̂−j on Xj•:

(36) β̂j =
〈Y•̂−j ,Xj•̂〉
‖Xj•̂‖2

=
〈Y ,Xj•̂〉
‖Xj•̂‖2

.

9.2 The Meaning of Slopes in the Presence of Nonlinearity

A first use of regressor adjustment is for proposing a meaning of linear slopes in
the presence of nonlinearity, and thereby responding to Freedman’s (2006, p. 302)
objection: “... it is quite another thing to ignore bias [nonlinearity]. It remains
unclear why applied workers should care about the variance of an estimator for
the wrong parameter.” Against this view one may hold that the parameter is
not intrinsically wrong, rather, it is in need of a useful interpretation: a linear
fit in the presence of nonlinearity gives a sense of the direction, up or down, of
association between a regressor and the response adjusted for other regressors. (If
the sole purpose is response prediction, well-specification is not the goal either;
it is rather trading off nonlinearity against noise over the regressor range.)

The issue is that, in the presence of nonlinearity, slopes lose their usual in-
terpretation: βj is no longer the average difference in Y associated with a unit
difference in Xj at fixed levels of all other Xk. The challenge is to provide an
alternative interpretation that remains valid and intuitive. As mentioned, a plau-
sible approach is to use adjusted variables, in which case it is sufficient to solve
the interpretation problem for simple regression through the origin. Regression
slopes can then be interpreted as weighted averages of “case-wise” and “pairwise”
slopes in a sense to be made precise. This interpretation holds even for regressors
that are nonlinearly related, as in X2 =X2

1 or X3 =X1X2, because the clause “at
fixed levels of all other regressors” is replaced by reference to “(linearly) adjusted
regressors.” (“Linearly” will be dropped in what follows.)

To lighten the notational burden, we drop subscripts from adjusted variables:

y ← Y•−j , x← Xj• , β ← βj for populations,

yi ← (Y•̂−j)i , xi ← (Xj•̂)i , β̂ ← β̂j for samples.

By (35) and (36), the population slopes and their estimates are, respectively,

β =
E[yx]

E[x2]
and β̂ =

∑
yixi∑
x2
i

.
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Fig 5. Case-wise and pairwise average weighted slopes illustrated: Both plots show the same six
points (“cases”) as well as the OLS line fitted to them (fat gray). The left hand plot shows the
case-wise slopes from the mean point (open circle) to the six cases, while the right hand plot
shows the pairwise slopes between all 15 pairs.

Slope interpretation will be based on the following devices:

• Population parameters β can be represented as weighted averages of ...

– case-wise slopes:

β = E[w b ], where b :=
y

x
, w :=

x2

E[x2 ]
,

so b and w where are case-wise slopes and case-wise weights, respec-
tively.

– pairwise slopes:

β = E[w b ], where b :=
y − y′

x− x′
, w :=

(x− x′)2

E[ (x− x′)2 ]
,

so b and w are pairwise slopes and weights, respectively, and (x, y)
and (x′, y′) are two independent identically distributed copies of the
adjusted regressor-response distribution.

• Sample estimates β̂ can be represented as weighted averages of ...

– case-wise slopes:

β̂ =
∑
i

wi bi , where bi :=
yi
xi
, wi :=

x2
i∑

i′ x
2
i′
,

so bi and wi are case-wise slopes and weights, respectively;

– pairwise slopes:

β̂ =
∑
ik

wik bik , where bik :=
yi − yk
xi − xk

, wik :=
(xi − xk)2∑
i′k′ (xi′ − xk′)2

,

so bik and wik are pairwise slopes and weights, respectively.
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See Figure 5 for an illustration for samples. The formulas support the intuition
that, even in the presence of nonlinearity, a linear fit can be used to infer the
overall direction of the association between the response and the regressors.

In the LA homeless data, we can interpret the slope for the regressor PercVacant,
say, in the following two ways:

(1) “Adjusted for all other regressors, the mean deviation of Homeless in re-
lation to the mean deviation of PercVacant is estimated to be on average
between 4 and 5 homeless per one percent of vacant property.”

(2) “Adjusted for all other regressors, the difference in Homeless between two
census tracts in relation to their difference in PercVacant is estimated to be
on average between 4 and 5 homeless per one percent of vacant property.”

Missing is a technical reference to the fact that the “average” is weighted. All
such formulations, if they aspire to be technically correct, end up being inelegant,
but the same is the case with the model-trusting formulation:

(*) “At constant levels of all other regressors, the average difference in Homeless

for a one percent difference in PercVacant is estimated to be between 4 and
5 homeless.”

This statement is strangely abstract as it refers to an unreal mental scenario of
pairs of census tracts that agree in all other regressors but differ in the focal re-
gressor by one unit. By comparison, statements (1) and (2) above refer to observed
mean deviations and differences. In practice, users will run with the shorthand
“the slope for PercVacant is between 4 and 5 homeless per one percent.”

Note on literature: The above formulas were used and modified to produce
alternative slope estimates by Gelman and Park (2008), with the “Goal of Ex-
pressing Regressions as Comparisons that can be Understood by the General
Reader” (see their Sections 1.2 and 2.2). Earlier, Wu (1986) used generalizations
based on tuples rather than pairs of (yi, ~x

′
i) rows for the analysis of jackknife and

bootstrap procedures (see his Section 3, Theorem 1). The formulas have a history
in which Stigler (2001) includes Edgeworth, while Berman (1988) traces it back
to a 1841 article by Jacobi written in Latin.

9.3 Asymptotic Variances — Proper and Improper

The following prepares the ground for an asymptotic comparison of model-
trusting with model-robust standard errors, one regressor at a time.

9.3.1 Preliminaries: Adjustment Formulas for EOs and Their CLTs: The vec-
torized formulas for estimation offsets (21) can be written componentwise using
adjustment as follows:

(37)

Total EO : β̂j − βj =
〈Xj•̂, δ〉
‖Xj•̂‖2

,

Noise EO : β̂j − βj(X) =
〈Xj•̂, ε〉
‖Xj•̂‖2

,

Approximation EO : βj(X)− βj =
〈Xj•̂,η〉
‖Xj•̂‖2

.
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To see these identities directly, note the following, in addition to (36): E[β̂j |X] =
〈µ,Xj•̂〉/‖Xj•̂‖2 and βj = 〈Xβ,Xj•̂〉/‖Xj•̂‖2, the latter due to 〈Xj•̂,Xk〉 =
δjk‖Xj•̂‖2. Finally use δ = Y −Xβ, η = µ−Xβ and ε = Y −µ.

From (37), asymptotic normality of the coefficient-specific EOs can be sepa-
rately expressed using population adjustment:

Corollary 9.3.1:

N1/2(β̂j − βj)
D−→ N

(
0,
E[m2( ~X)X 2

j•]

E[X 2
j•]

2

)
= N

(
0,
E[ δ2X 2

j•]

E[X 2
j•]

2

)

N1/2(β̂j − βj(X))
D−→ N

(
0,
E[σ2( ~X)X 2

j•]

E[X 2
j•]

2

)
= N

(
0,
E[ ε2X 2

j•]

E[X 2
j•]

2

)

N1/2(βj(X)− βj)
D−→ N

(
0,
E[ η2( ~X)X 2

j•]

E[X 2
j•]

2

)

The equalities on the right side in the first and second case are based on
(29). The first one will be needed for plug-in estimation. The sandwich form for
matrices has been reduced to a ratio where the numerator corresponds to the
“meat” and the squared denominator to the “breads”.

9.3.2 Model-Robust Asymptotic Variances in Terms of Adjusted Regressors:
The CLTs of Corollary 9.3.1 contain three asymptotic variances of the same form
with arguments m2( ~X), σ2( ~X) and η2( ~X). This suggests using generic notation:

Definition 9.3.2: Proper Asymptotic Variance and its Components.

AVlean[β̂j ; f
2] :=

E[ f2( ~X)X 2
j•]

E[X 2
j•]

2
, where f2(~x) = m2(~x), σ2(~x) or η2(~x).

The subscript lean refers to the assumption-lean model-robust framework.

9.3.3 Model-Trusting Asymptotic Variances in Terms of Adjusted Regressors:
The goal is to provide an asymptotic limit for the usual model-trusting standard
error estimate of linear models theory in the model-robust framework. It derives
from an estimate σ̂2 of the noise variance, σ̂2 = ‖Y −Xβ̂‖2/(N−p−1), which
has the following limit for fixed p:

σ̂2 P−→ E[m2( ~X) ] = E[σ2( ~X) ] +E[ η2( ~X) ], N →∞.

Squared standard error estimates are, in matrix and adjustment form, as follows:

(38) V̂lin[ β̂ ] = σ̂2 (X ′X)−1, ŜE
2
lin[ β̂j ] =

σ̂2

‖Xj•̂‖2
.

Their scaled limits under model-robust assumptions are as follows:

N V̂lin[ β̂ ]
P−→ E[m2( ~X) ] E[ ~X ~X ′ ]−1, N ŜE

2
lin[ β̂j ]

P−→ E[m2( ~X) ]

E[X2
j• ]

.
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These limits are model-trusting asymptotic variances which provide valid stan-
dard errors if the first and second order assumptions of linear models theory hold.
Here is again a generic definition with an associated decomposition:

Definition 9.3.3: Improper Asymptotic Variance and its Components.

AVlin[β̂j ; f
2] :=

E[ f2( ~X)]

E[X 2
j•]

, where f2(~x) = m2(~x), σ2(~x) or η2(~x).

The subscript lin refers to the assumption-loaded model-trusting framework of
linear models theory.

9.3.4 RAV — Ratio of Proper and Improper Asymptotic Variances: To ex-
amine the discrepancies between proper and improper asymptotic variances we
form their ratios separately for each of m2( ~X), σ2( ~X) and η2( ~X), hence we use
again a generic form of the ratio:

Definition 9.3.4: Ratio of Asymptotic Variances, Proper/Improper.
For f2(~x) = m2(~x), σ2(~x) or η2(~x), let

RAV [β̂j , f
2] :=

AVlean[β̂j , f
2]

AVlin[β̂j , f2]
=

E[f2( ~X)X 2
j•]

E[f2( ~X)]E[X 2
j•]
.

The ratio RAV [β̂j ,m
2] shows by what multiple the improper asymptotic variance

deviates from the proper one:

If RAV [β̂j ,m
2]


= 1
> 1
< 1

, then ŜElin[β̂j ] is asymptotically


correct
too small
too large

.

If, for example, RAV [β̂j ,m
2] = 4, then for large samples the proper standard

error of β̂j is about twice as large as the usual standard error.

If, however, RAV [β̂j ,m
2]= 1, it does not follow that the model is well-specified.

Well-specification to first and second order is sufficient but not necessary for
asymptotic validity of the usual standard error. In particular, the following holds:

Lemma 9.3.4: If δ2 and Xj•
2 are independent, then RAV [β̂j ,m

2] = 1.

Proof: The numerator of RAV [β̂j ,m
2], which is E[m2( ~X)Xj•

2], factorizes and
cancels out with the denominators.

The three terms RAV [β̂j ,m
2], RAV [β̂j , σ

2] and RAV [β̂j , η
2] can be interpreted

as inner products between the three random variables

m2( ~X)

E[m2( ~X)]
,

σ2( ~X)

E[σ2( ~X)]
,

η2( ~X)

E[η2( ~X)]
and

X 2
j•

E[X 2
j•]
.

These are not correlations, and they are not upper bounded by +1; their natural
bounds are rather 0 and ∞ (Section 9.3.5).
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Fig 6. A family of functions f2
t (x) that can be interpreted as heteroskedasticities σ2

j (Xj•), squared
nonlinearities η2j (Xj•), or conditional MSEs m2

j (Xj•): The family interpolates RAV from 0 to
∞ for x = Xj• ∼ N(0, 1). The three solid black curves show f2

t (x) that result in RAV=0.05, 1,
and 10. (See Appendix D.4 for details.)
RAV =∞ is approached as f2

t (x) bends ever more strongly in the tails of the x-distribution.
RAV = 0 is approached by an ever stronger spike in the center of the x-distribution.

A simplification is achieved by conditioning the three left hand terms on X 2
j•:

Definition and Lemma: Let f2
j (X 2

j•) := E[f2( ~X) |X 2
j•]. Then:

(39) m2
j (X

2
j•) = η2

j (X
2
j•) + σ2

j (X
2
j•) and RAV [β̂j , f

2] = RAV [β̂j , f
2
j ].

Thus the analysis of the RAV is reduced to single squared adjusted regressors
X 2
j• which lends itself to simple case studies and graphical illustrations.

9.3.5 The Range of RAV : The goal is to describe the extremes of the RAV .

These can be interpreted as extremes over scenarios of m2( ~X), σ2( ~X), η2( ~X),
or, by (39), of m2

j (X
2
j•), σ

2
j (X

2
j•), η

2
j (X

2
j•). The proposition below is stated for m2

j :

Proposition 9.3.5: If E[X 2
j•] <∞ and Xj• has unbounded support, then

sup
m2

j

RAV [β̂j ,m
2
j ] = ∞.

If E[X 2
j•] <∞ and Xj• has 0 in its support, then

inf
m2

j

RAV [β̂j ,m
2
j ] = 0.

Thus, when the adjusted regressor distribution is unbounded, the usual standard
error can be too small to any degree. Conversely, if the adjusted regressor is not
bounded away from zero, it can be too large to any degree.

imsart-sts ver. 2014/07/30 file: Buja_et_al_Conspiracy-v4.tex date: March 5, 2016



MODELS AS APPROXIMATIONS 27

●

●

●
●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●●

●

●

●

●●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

● ● ●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

● ●

●
●

●

●

●

●
● ●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●● ●

●

● ●

●

●

●

●

●

● ●

●

●
●
● ●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●
●

●

●

● ●

●
●

●

● ●

●

●

●

●

●

●

●● ●

●

●

●

● ●

●

●

●

●

● ●

●
●

−1.0 −0.5 0.0 0.5 1.0

−
4

−
2

0
2

4

x

y

RAV ~ 2

●

●

●

●

●

●● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●●

●

●

●

●

● ●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●●●●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●● ●

●● ●
●

●●

●

●
●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●
●

●
●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●
●

●●

●

●

●

●
●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●
●

● ●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

●●

● ●●

●
●

●
●

●

●

●

●

●
●

●●

●

●

●

●● ●
●

●

●
●

●

●

●

●

●

●

● ●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●● ●●

●

●
●

●

●

●

●

−1.0 −0.5 0.0 0.5 1.0

−
4

−
2

0
2

4

x

y

RAV ~ 0.08

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●● ●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

● ●

●
●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●●

●

●

●

●

●

●

−1.0 −0.5 0.0 0.5 1.0

−
4

−
2

0
2

4

x

y

RAV ~ 1

Fig 7. The effect of heteroskedasticity on the sampling variability of slope estimates: How does
the treatment of the heteroskedasticities as homoskedastic affect statistical inference?
Left: High noise variance in the tails of the regressor distribution elevates the true sampling
variability of the slope estimate above the usual standard error: RAV [β̂j , σ

2] > 1.
Center: High noise variance near the center of the regressor distribution lowers the true sampling
variability of the slope estimate below the usual standard error: RAV [β̂j , σ

2] < 1.
Right: The noise variance oscillates in such a way that the usual standard error is coincidentally
correct (RAV [β̂j , σ

2] = 1).

What shapes of m2
j (Xj•) approximate these extremes? An intuitive answer can

be gleaned from Figure 6 for normally distributedXj• to illustrate the proposition:
If nonlinearities and/or heteroskedasticities blow up ...

• in the tails of the Xj• distribution, then RAV takes on large values;
• in the center of the Xj• distribution, then RAV takes on small values.

The proof in Appendix D.3 bears this out. As the main concern is with usual
standard errors that are optimistic, RAV >1, the proposition indicates that Xj•-
distributions with bounded support enjoy some protection from the worst case.

9.3.6 Illustration of Factors that Drive the RAV : To further analyze theRAV ,
we drill down from m2

j (X
2
j•) to σ2

j (X
2
j•) and η2

j (X
2
j•) in terms of potential data

situations. Figure 7 shows three heteroskedasticity scenarios and Figure 8 three
nonlinearity scenarios. These examples train our intuitions about the types of
heteroskedasticities and nonlinearities that drive theRAV . According to theRAV
decomposition lemma in Appendix D.2, RAV [β̂j ,m

2
j ] is a mixture of RAV [β̂j , σ

2
j ]

and RAV [β̂j , η
2
j ]. Therefore:

• Heteroskedasticities with large σ2
j (X

2
j•) in the tails of Xj•

2 produce an up-

ward contribution to RAV [β̂j ,m
2
j ]; heteroskedasticities with large σ2

j (X
2
j•)

near X 2
j• = 0 imply a downward contribution to RAV [β̂j ,m

2
j ].

• Nonlinearities with large average values η2
j (X

2
j•) in the tails of X 2

j• imply

an upward contribution to RAV [β̂j ,m
2
j ]; nonlinearities with large η2

j (X
2
j•)

concentrated near X 2
j• = 0 imply a downward contribution to RAV [β̂j ,m

2
j ].

These facts also suggest that large values RAV>1 should occur more often than
small values RAV<1 because large conditional variances as well as nonlinearities
are often more pronounced in the extremes of regressor distributions, not their
centers. This is most natural for nonlinearities which are often convex or concave.
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Fig 8. The effect of nonlinearities on the sampling variability of slope estimates: The three plots
show three different noise-free nonlinearities; each plot shows for one nonlinearity 20 overplotted
datasets of size N = 10 and their fitted lines through the origin. The question is how the misin-
terpretation of the nonlinearities as homoskedastic random errors affects statistical inference.
Left: Strong nonlinearity in the tails of the regressor distribution elevates the true sampling vari-
ability of the slope estimate above the usual standard error (RAV [β̂j , η

2] > 1).
Center: Strong nonlinearity near the center of the regressor distribution lowers the true sampling
variability of the slope estimate below the usual standard error (RAV [β̂j , η

2] < 1).
Right: An oscillating nonlinearity mimics homoskedastic random error to make the usual stan-
dard error coincidentally correct (RAV [β̂j , η

2] = 1).

Also, it follows from the RAV decomposition lemma (Appendix D.2) that either
of RAV [β̂j , σ

2
j ] or RAV [β̂j , η

2
j ] is able to single-handedly pull RAV [β̂j ,m

2
j ] to

+∞, whereas both have to be close to zero to pull RAV [β̂j ,m
2
j ] toward zero.

These considerations are heuristics for the observation that in practice ŜElin is
more often too small than too large compared to ŜEsand.

9.4 Sandwich Estimators in Adjusted Form and a RAV Test

The goal here is to write the RAV in adjustment form and estimate it with
plug-in for use as a test statistic to decide whether the usual standard error is
adequate. We will obtain one test per regressor.

The proposed test is related to the class of “misspecification tests” for which
there exists a literature starting with Hausman (1978) and continuing with White
(1980a,b; 1981; 1982) and others. These tests are largely global rather than
coefficient-specific, which ours is. The test proposed here has similarities to White’s
(1982, Section 4) “information matrix test” which compares two types of infor-
mation matrices globally, while we compare two types of standard errors, one
coefficient at a time. Another, parameter-specific misspecification test of White
(1982, Section 5) compares two types of coefficient estimates rather than standard
error estimates, which hence is not a test of standard error discrepancies.

As illustrated above, the types of nonlinearities and heteroskedasticities that
result in discrepancies between SElin and SEsand are very specific ones, while
other types are benign. Furthermore, different coefficients in the same model are
differently affected by the same nonlinearity and heteroskedasticity because their
effect on the standard errors is channeled through the adjusted regressors. The
problem of standard error discrepancies is therefore not solved by general-purpose
misspecification tests and model diagnostics.
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9.4.1 Sandwich Estimators in Adjustment Form and the ˆRAVj Test Statistic:
To begin with, the adjustment versions of the asymptotic variances in the CLTs
of Corollary 9.3.1 can be used to rewrite the sandwich estimator by replacing
expectations E[...] with means Ê[...], β with β̂, Xj• with Xj•̂, and rescaling
by N :

(40) ŜEsand[β̂j ]
2 =

1

N

Ê[ (Y − ~X ′β̂)2Xj•̂
2]

Ê[Xj•̂
2] 2

=
〈(Y −Xβ̂)2,Xj•̂

2〉
‖Xj•̂‖4

.

The squaring of N -vectors is meant to be coordinate-wise. Formula (40) is alge-
braically equivalent to the diagonal elements of (33).

The usual squared standard error estimate (38) is

(41) ŜElin[β̂j ]
2 =

‖Y −Xβ̂‖2

(N−p−1) ‖Xj•̂‖2
∼ 1

N

Ê[(Y − ~X ′β̂)2]

Ê[Xj•̂
2]

=
‖Y −Xβ̂‖2

N ‖Xj•̂‖2
,

where the right hand forms are normalized to match (40), ignoring p. Thus the
natural plug-in estimate of RAV [β̂j ,m

2] is

(42) ˆRAVj :=
Ê[ (Y − ~X ′β̂)2Xj•̂

2 ]

Ê[ (Y − ~X ′β̂)2 ] Ê[Xj•̂
2 ]

= N
〈(Y −Xβ̂)2,Xj•̂

2〉
‖Y −Xβ̂‖2 ‖Xj•̂‖2

.

This is the proposed test statistic. Analogous to the population-levelRAV [β̂j ,m
2],

the sample-level ˆRAVj responds to associations between squared residuals and
squared adjusted predictors.

9.4.2 The Asymptotic Null Distribution of the RAV Test Statistic: Here is an
asymptotic result that would be expected to yield approximate inference under
a null hypothesis that implies RAV [β̂j ,m

2] = 1 based on Lemma 9.3.4:

Proposition 9.4.2: Under the null hypothesis H0 that the population residuals
δ and the adjusted regressor Xj• are independent, it holds:

(43) N1/2 ( ˆRAVj − 1)
D−→ N

(
0,
E[ δ4]

E[ δ2]2
E[Xj•

4]

E[X 2
j•]

2
− 1)

)
.

As always we ignore technical assumptions. A proof outline is in Appendix D.5.
The asymptotic variance of ˆRAVj underH0 is driven by the standardized fourth

moments or the kurtoses (= same− 3) of δ and Xj•. Some observations:

1. The larger the kurtosis of δ and/or Xj•, the more the asymptotic variance
gets inflated, and hence the less likely is detection of first and second order
model misspecification resulting in standard error discrepancies.

2. Because standardized fourth moments are always ≥ 1 by Jensen’s inequal-
ity, the asymptotic variance is ≥ 0, as it should be. The asymptotic variance
vanishes iff the minimal standardized fourth moment is +1 for both δ and
Xj•, in which case both have symmetric two-point distributions (as both are

centered). For such Xj• it follows that RAV [β̂j ,m
2] = 1 by Proposition D.3.

3. A test of the stronger H0 that includes normality of δ is obtained by setting
E[δ4]/E[δ2]2 = 3 rather than estimating it. The result, however, is an overly
sensitive non-normality test much of the time, which does not seem useful
as non-normality can be diagnosed and tested by other means.
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β̂j SElin SEsand
ˆRAVj 2.5% Perm. 97.5% Perm.

(Intercept) 0.760 22.767 16.209 0.495* 0.567 3.228

MedianInc (1000) -0.183 0.187 0.108 0.318* 0.440 5.205

PercVacant 4.629 0.901 1.363 2.071 0.476 3.852

PercMinority 0.123 0.176 0.164 0.860 0.647 2.349

PercResidential -0.050 0.171 0.111 0.406* 0.568 3.069

PercCommercial 0.737 0.273 0.397 2.046 0.578 2.924

PercIndustrial 0.905 0.321 0.592 3.289* 0.528 3.252
Table 4

LA Homeless data: Permutation Inference for ˆRAVj (10,000 permutations). Values of ˆRAVj

that fall outside the middle 95% range of their permutation null distributions are marked with
asterisks. They indicate statistically significant deviations of the usual model-trusting standard

errors of linear models theory from their model-robust sandwich analogs. For MedianInc

(1000) and PercResidential the usual standard error is too large (conservative), while for
PercIndustrial it is too small (liberal). Surprisingly, the values of approximately 2 for the

ˆRAVj of PercVacant and PercCommercial are not statistically significant.

9.4.3 An Approximate Permutation Distribution of the RAV Test Statistic:
The asymptotic result of Proposition 9.4.2 provides qualitative insights, but it is
not suitable for practical application because the null distribution of ˆRAVj can
be very non-normal for finite N , and this in ways that are not easily overcome
with simple tools such as nonlinear transformations. Another approach to null
distributions for finite N is needed, and it is available in the form of an approxi-
mate permutation test because H0 is just a null hypothesis of independence, here
between δ and Xj•. The test is not exact, requiring N � p, because population
residuals δi must be estimated with sample residuals ri and population adjusted
regressor values Xi,j• with sample adjusted analogs Xi,j•̂. The permutation sim-
ulation is cheap: Once coordinate-wise squared vectors r2 and Xj•̂

2 are formed,
a draw from the conditional null distribution of ˆRAVj is obtained by randomly
permuting one of the vectors and forming the inner product with the other vector,
rescaled by a fixed factor N/(‖r‖2‖Xj•̂‖2). A retention interval should be formed
directly from the α/2 and 1−α/2 quantiles of the permutation distribution to
account for distributional asymmetries. Additionally, the permutation distribu-
tion yields an easy diagnostic of non-normality (see Appendix E for examples).
— Table 4 illustrates RAV tests with the LA Homeless data.

9.4.4 Generalizations of RAV Tests: TheRAV test proposed here seems to be
novel. It is not a special case of White’s (1980b) global heteroskedasticity test, nor
of his misspecification test for general ML estimation (White 1982). The latter
is based on equating the two forms of the information matrix, hence works on
the matrix-inverse scale of asymptotic variances and is incapable of comparing
model-trusting and model-robust asymptotic variances of specific parameters.
Generalized RAV tests are conceivable for general MoM estimators by forming

ratios ÂVjj/(Λ̂
−1

)jj using notation of Sections 7.5 (27) and 8.1 (32). We do not
have results for RAV tests in this generality, however.

10. ISSUES WITH MODEL-ROBUST STANDARD ERRORS

Model-robustness is a highly desirable property, but as always there is no free
lunch. Kauermann and Carroll (2001) have shown that a cost of the sandwich
estimator can be inefficiency when the assumed model is correct. Sandwich
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estimators should be accurate only when the sample size is sufficiently large. This
fact suggests that use of a model-trusting standard error should be kept in mind
if there is evidence in its favor, for example, through the RAV test (Section 9.4).

Another cost associated with the sandwich estimator is non-robustness in
the sense of robust statistics (Huber and Ronchetti 2009, Hampel et al.
1986), meaning strong sensitivity to outlying observations and heavy-tailed error

distributions: The statistic ŜE
2
sand[β̂j ] (40) is a ratio of fourth order quantities

of the data, whereas ŜE
2
lin[β̂j ] (41) is “only” a ratio of second order quantities.

[Note we are here concerned with non-robustness of standard error estimates, not
parameter estimates.] It appears, therefore, that the two types of robustness are in
conflict: Model-robust standard error estimators are highly non-robust compared
to their model-trusting analogs. This is a large issue which we can only raise but
not solve in this space. Here are a few observations and suggestions:

• If model-robust standard errors are not classically robust, anecdotal evi-
dence indicates the converse: the standard errors of classical robust regres-
sion are not model-robust either. In the LA Homeless data, for example, for
the most important variable PercVacant, we observed a ratio of 1:3.28 when
comparing the standard error reported by the software (function rlm in the
R Language (2008)) and its model-robust analog from the x-y-bootstrap.
• Yet classical robust regression may confer partial robustness to the sand-

wich standard error as it caps residuals with a bounded ψ function. This
addresses robustness to outlyingness in the vertical (y) direction.
• Robustness to outlyingness in the horizontal (~x) direction could be achieved

by using bounded-influence regression (see, e.g., Krasker and Welsch 1982,
and references therein) which automatically downweights observations in
high-leverage positions, or by using some other downweighting scheme to
control the effects of high-leverage points.
• Robustness to horizontal outlyingness could also be addressed by transform-

ing the regressor variables to bounded ranges. Taking a cue from Proposi-
tion D.3 in the appendix, one might search for transformations that obviate
the need for a model-robust standard error in the first place.

To illustrate the last point, we transformed the regressors of the LA Homeless
data with their empirical cdfs to achieve approximately uniform marginal distri-
butions. The transformed data are no longer i.i.d., but the point is to examine
the effect of transforming the regressors to a finite range. As a result, shown in
Table 5, the discrepancies between sandwich and usual standard errors have all
but disappeared. The same drastic effect is not seen in the Boston Housing data
(Appendix A, Table 7), although the discrepancies are greatly reduced here, too.

11. SUMMARY AND OUTLOOK

If statistical models imply “simplification and idealization” (Cox 1995), they
should be treated as approximations rather than well-specified truths. The impli-
cations of this view are vast: (1) Parameters need to be re-interpreted as statistical
functionals defined on large nonparametric sets of data distributions beyond a
chosen model; (2) a main function of models is to supply objective functions
and moment conditions to construct such statistical functionals; (3) a notion
of well/mis-specification can be defined for general statistical functionals; (4) for
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β̂j SElin SEboot SEsand
SEboot
SElin

SEsand
SElin

SEsand
SEboot

tlin tboot tsand

(Intercept) 2.932 0.381 0.395 0.395 1.037 1.036 0.999 7.697 7.422 7.427

MedianInc ($K) -1.128 0.269 0.280 0.278 1.041 1.033 0.992 -4.195 -4.030 -4.061

PercVacant 1.264 0.207 0.203 0.202 0.982 0.978 0.996 6.111 6.221 6.247

PercMinority -0.467 0.230 0.246 0.246 1.070 1.069 0.999 -2.028 -1.896 -1.897

PercResidential -0.314 0.220 0.228 0.230 1.040 1.049 1.008 -1.432 -1.377 -1.366

PercCommercial 0.201 0.212 0.220 0.220 1.040 1.042 1.002 0.949 0.913 0.911

PercIndustrial 0.180 0.238 0.244 0.244 1.022 1.024 1.002 0.754 0.737 0.736

Table 5
LA Homeless Data: Comparison of Standard Errors after transforming the regressors with
their cdfs to approximately uniform distributions. The taming of the tails of the regressor

distributions has resolved all discrepancy issues for the usual model-trusting standard errors.

the same data distribution some statistical functionals may be well-specified while
others may not; (5) the degree to which statistical functionals are misspecified
determines the degree to which regressor ancillarity is violated; as a consequence
of regressor non-ancillarity, (6) parameters (statistical functionals) depend on the
regressor distribution, and (7) a source of sampling variability in estimation arises
from an interaction (“conspiracy”) of regressor randomness and misspecification;
(8) this sampling variability is asymptotically correctly captured by model-robust
standard error estimates from the x-y bootstrap and asymptotic plug-in (which
includes sandwich estimators); (9) plug-in (and hence sandwich) estimators are a
limiting case of x-y bootstrap standard errors. These facts hold universally for all
regression methods based on i.i.d. data and well-behaved statistical functionals.

For linear OLS we identified the nature of misspecifications that render model-
trusting standard errors too optimistic or too pessimistic, or neither. If the latter,
the misspecification is benign. This suggests that general-purpose model diag-
nostics and misspecification tests cannot be used to invalidate model-trusting
standard errors. Rather, a specific test such as the RAV test is needed.

Since White’s seminal work, research into misspecification has progressed far
and in many forms by addressing specific classes of misspecifications: dependen-
cies, heteroskedasticities and nonlinearities. A direct generalization of White’s
sandwich estimator to time series dependence in regression data is the “hetero-
skedasticity and auto-correlation consistent” (HAC) estimator of standard error
by Newey and West (1987). Structured second order misspecifications such as
over/underdispersion have been addressed with quasi-likelihood. More generally
intra-cluster dependencies in clustered (e.g., longitudinal) data have been ad-
dressed with generalized estimating equations (GEE) where the sandwich esti-
mator is in common use, as it is in the generalized method of moments (GMM)
literature. Finally, nonlinearities have been modeled with specific function classes
or estimated nonparametrically with, for example, additive models, spline and
kernel methods, and tree-based fitting.

In spite of these advances, in finite data not all possibilities of misspecification
can be approached simultaneously, and there arises a need for model-robust infer-
ence. Even if complex modeling is possible, simple questions may call for simple
models, in which case again one may want to look for model-robust inference.

There exist, finally, areas of statistics research where model-trusting theory
appears frequently:

• Bayes inference, when it relies on uninformative priors, is asymptotically
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equivalent to model-trusting frequentist inference. It should be reasonable
to ask how far inferences from Bayesian models are adversely affected by
misspecification. Complex Bayesian models often use large numbers of fitted
parameters and control overfitting by shrinkage, hence asymptotic compar-
isons may be inadequate and might have to be replaced by other forms of
analysis. Some promising developments are the following: Szpiro, Rice and
Lumley (2010) derive a sandwich estimator from Bayesian assumptions, and
a lively discussion of misspecification from a Bayesian perspective involved
Walker (2013), De Blasi (2013), Hoff and Wakefield (2013) and O’Hagan
(2013), who provide further references.

• High-dimensional inference is the subject of a large literature that often
appears to rely on the assumptions of linearity, homoskedasticity as well as
normality of error distributions. It may be uncertain whether procedures
proposed in this area are model-robust. Recently, however, attention to the
issue started to be paid by Bühlmann and van de Geer (2015). Related is
also the incorporation of ideas from robust statistics by, for example, El
Karoui et al. (2013), Donoho and Montanari (2014), and Loh (2015).

In summary, while interesting developments are in progress, there remains work
to be done especially in some of today’s most lively research areas. Even within
the narrower, non-Bayesian and low-dimensional domain there remains the un-
resolved conflict between model-robustness and classical robustness at the level
of standard errors. The idea that statistical models are approximations, and that
this idea has consequences for statistical inference, may not yet be realized.

Acknowledgments: We are grateful to Gemma Moran and Bikram Karmakar
for their help in the generalizations of Section 7.
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β̂j SElin SEboot SEsand
SEboot
SElin

SEsand
SElin

SEsand
SEboot

tlin tboot tsand

(Intercept) 36.459 5.103 8.038 8.145 1.575 1.596 1.013 7.144 4.536 4.477

CRIM -0.108 0.033 0.035 0.031 1.055 0.945 0.896 -3.287 -3.115 -3.478

ZN 0.046 0.014 0.014 0.014 1.005 1.011 1.006 3.382 3.364 3.345

INDUS 0.021 0.061 0.051 0.051 0.832 0.823 0.990 0.334 0.402 0.406

CHAS 2.687 0.862 1.307 1.310 1.517 1.521 1.003 3.118 2.056 2.051

NOX -17.767 3.820 3.834 3.827 1.004 1.002 0.998 -4.651 -4.634 -4.643

RM 3.810 0.418 0.848 0.861 2.030 2.060 1.015 9.116 4.490 4.426

AGE 0.001 0.013 0.016 0.017 1.238 1.263 1.020 0.052 0.042 0.042

DIS -1.476 0.199 0.214 0.217 1.075 1.086 1.010 -7.398 -6.882 -6.812

RAD 0.306 0.066 0.063 0.062 0.949 0.940 0.990 4.613 4.858 4.908

TAX -0.012 0.004 0.003 0.003 0.736 0.723 0.981 -3.280 -4.454 -4.540

PTRATIO -0.953 0.131 0.118 0.118 0.899 0.904 1.005 -7.283 -8.104 -8.060

B 0.009 0.003 0.003 0.003 1.026 1.009 0.984 3.467 3.379 3.435

LSTAT -0.525 0.051 0.100 0.101 1.980 1.999 1.010 -10.347 -5.227 -5.176

Table 6
Boston Housing data: Comparison of Standard Errors.

APPENDIX A: THE BOSTON HOUSING DATA

Table 6 illustrates discrepancies between types of standard errors with the
Boston Housing data (Harrison and Rubinfeld 1978) which will be well known to
many readers. Again, we dispense with the question as to whether the analysis is
meaningful and focus on the comparison of standard errors. Here, too, SEboot and
SEsand are mostly in agreement as they fall within less than 2% of each other,
an exception being CRIM with a deviation of about 10%. By contrast, SEboot and
SEsand are larger than their linear models cousin SElin by a factor of about 2 for
RM and LSTAT, and about 1.5 for the intercept and the dummy variable CHAS.
On the opposite side, SEboot and SEsand are less than 3/4 of SElin for TAX. For
several regressors there is no major discrepancy among all three standard errors:
ZN, NOX, B, and even for CRIM, SElin falls between the slightly discrepant values
of SEboot and SEsand.

Table 7 compares standard errors after the
illustrates the RAV test for the Boston Housing data. Values of ˆRAVj that fall

outside the middle 95% range of their permutation null distributions are marked
with asterisks.

Table 8 illustrates the RAV test for the Boston Housing data. Values of ˆRAVj
that fall outside the middle 95% range of their permutation null distributions are
marked with asterisks.

APPENDIX B: ANCILLARITY

The facts as laid out in Section 5 amount to an argument against condition-
ing on regressors in regression. The justification for conditioning derives from an
ancillarity argument according to which the regressors, if random, form an ancil-
lary statistic for the linear model parameters β and σ2, hence conditioning on X
produces valid frequentist inference for these parameters (Cox and Hinkley 1974,
Example 2.27). Indeed, with a suitably general definition of ancillarity, it can be
shown that in any regression model the regressors form an ancillary. To see this
we need an extended definition of ancillarity that includes nuisance parameters.
The ingredients and conditions are as follows:
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β̂j SElin SEboot SEsand
SEboot
SElin

SEsand
SElin

SEsand
SEboot

tlin tboot tsand

(Intercept) 37.481 2.368 2.602 2.664 1.099 1.125 1.024 15.828 14.405 14.069

CRIM 4.179 1.746 1.539 1.533 0.882 0.878 0.996 2.394 2.715 2.726

ZN 0.826 1.418 1.359 1.353 0.959 0.954 0.995 0.583 0.608 0.611

INDUS -1.844 1.501 1.410 1.413 0.939 0.941 1.002 -1.228 -1.308 -1.305

CHAS 6.328 1.764 2.490 2.485 1.411 1.409 0.998 3.587 2.542 2.547

NOX -6.209 1.986 2.035 2.037 1.025 1.026 1.001 -3.127 -3.051 -3.048

RM 4.848 1.044 1.354 1.380 1.297 1.322 1.019 4.645 3.581 3.514

AGE 2.925 1.454 1.897 1.904 1.305 1.310 1.004 2.012 1.542 1.536

DIS -9.047 1.754 1.933 1.945 1.102 1.109 1.006 -5.159 -4.679 -4.652

RAD 1.042 1.307 1.115 1.128 0.853 0.863 1.011 0.797 0.935 0.924

TAX -5.319 1.343 1.155 1.157 0.860 0.862 1.003 -3.961 -4.607 -4.596

PTRATIO -4.720 0.954 0.982 0.982 1.029 1.029 1.000 -4.946 -4.806 -4.808

B -1.103 0.822 0.798 0.800 0.970 0.972 1.002 -1.342 -1.383 -1.380

LSTAT -21.802 1.377 2.259 2.318 1.641 1.683 1.026 -15.832 -9.649 -9.404

Table 7
Boston Housing data: Comparison of Standard Errors; regressors are transformed with cdfs.

β̂j SElin SEsand
ˆRAVj 2.5% Perm. 97.5% Perm.

(Intercept) 36.459 5.103 8.145 2.458* 0.859 1.535

CRIM -0.108 0.033 0.031 0.776 0.511 3.757

ZN 0.046 0.014 0.014 1.006 0.820 1.680

INDUS 0.021 0.061 0.051 0.671* 0.805 1.957

CHAS 2.687 0.862 1.310 2.255* 0.722 1.905

NOX -17.767 3.820 3.827 0.982 0.848 1.556

RM 3.810 0.418 0.861 4.087* 0.793 1.816

AGE 0.001 0.013 0.017 1.553* 0.860 1.470

DIS -1.476 0.199 0.217 1.159 0.852 1.533

RAD 0.306 0.066 0.062 0.857 0.830 1.987

TAX -0.012 0.004 0.003 0.512* 0.767 1.998

PTRATIO -0.953 0.131 0.118 0.806* 0.872 1.402

B 0.009 0.003 0.003 0.995 0.786 1.762

LSTAT -0.525 0.051 0.101 3.861* 0.803 1.798
Table 8

Boston Housing data: Permutation Inference for ˆRAVj (10,000 permutations).
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(1) θ = (ψ,λ) : the parameters, where ψ is of interest and λ is nuisance;
(2) S = (T ,A) : a sufficient statistic with values (t,a);
(3) p(t,a; ψ,λ) = p(t |a; ψ) p(a; λ) : the condition that makes A an ancillary.

We say that the statistic A is ancillary for the parameter of interest, ψ, in the
presence of the nuisance parameter, λ. Condition (3) can be interpreted as saying
that the distribution of T is a mixture with mixing distribution p(a|λ). More im-
portantly, for a fixed but unknown value λ and two values ψ1, ψ0, the likelihood
ratio

p(t,a; ψ1,λ)

p(t,a; ψ0,λ)
=

p(t |a; ψ1)

p(t |a; ψ0)

has the nuisance parameter λ eliminated, justifying the conditionality principle
according to which valid inference for ψ can be obtained by conditioning on A.

When applied to regression, the principle implies that in any regression model
the regressors, when random, are ancillary and hence can be conditioned on:

p(y,X; θ) = p(y |X; θ) pX(X),

where X acts as the ancillary A and pX as the mixing distribution p(a |λ) with
a “nonparametric” nuisance parameter that allows largely arbitrary distributions
for the regressors. (The regressor distribution should grant identifiability of θ in
general, and non-collinearity in linear models in particular.) The literature does
not seem to be rich in crisp definitions of ancillarity, but see, for example, Cox and
Hinkley (1974, p.32-33). For the interesting history of ancillarity see the articles
by Stigler (2001) and Aldrich (2005).

As explained in Section 5, the problem with the ancillarity argument is that it
holds only when the regression model is correct. In practice, whether models are
correct is never known.

APPENDIX C: ADJUSTMENT

C.1 Adjustment in Populations

To define the population-adjusted regressor random variable Xj•, collect all
other regressors in the random p-vector

~X−j = (1, X1, ..., Xj−1, Xj+1, ..., Xp)
′,

and let

Xj• = Xj − ~X−j
′β−j•, where β−j• = E[ ~X−j ~X−j

′]−1E[ ~X−jXj ].

The response Y can be adjusted similarly, and we may denote it by Y•−j to indicate
that Xj is not among the adjustors, which is implicit in the adjustment of Xj .

C.2 Adjustment in Samples

Define the sample-adjusted regressor column Xj•̂ by collecting all regressor
columns other than Xj in a N×p random regressor matrix

X−j = [1, ...,Xj−1,Xj+1, ...,Xp]

and let

Xj•̂ = Xj −X−j β̂−j•̂ where β̂−j•̂ = (X−j
′X−j)

−1X−j
′Xj .
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(Note the use of hat notation “ •̂ ” to distinguish it from population-based adjust-
ment “•”.) The response vector Y can be sample-adjusted similarly, and we may
denote it by Y•̂−j to indicate that Xj is not among the adjustors.

APPENDIX D: PROOFS

D.1 Precise Non-Ancillarity Statements and Proofs for Section 5

Lemma: The functional β(P ) depends on P only through the conditional mean
function and the regressor distribution; it does not depend on the conditional noise
distribution.

In the nonlinear case the clause ∃P 1,P 2 : β(P 1) 6= β(P 2) is driven solely
by differences in the regressor distributions P 1(d~x) and P 2(d~x) because P 1 and
P 2 share the mean function µ0(.) while their conditional noise distributions are
irrelevant by the above lemma.

The Lemma is more precisely stated as follows: For two data distributions
P 1(dy,d~x) and P 2(dy,d~x) the following holds:

P 1(d~x) = P 2(d~x), µ1( ~X)
P 1,2
= µ2( ~X) =⇒ β(P 1) = β(P 2).

Proposition: The OLS functional β(P ) does not depend on the regressor dis-
tribution if and only if µ( ~X) is linear. More precisely, for a fixed measurable
function µ0(~x) consider the class of data distributions P for which µ0(.) is a

version of their conditional mean function: E[Y | ~X] = µ( ~X)
P
= µo( ~X). In this

class the following holds:

µ0(.) is nonlinear =⇒ ∃P 1,P 2 : β(P 1) 6= β(P 2),
µ0(.) is linear =⇒ ∀P 1,P 2 : β(P 1) = β(P 2).

For the proposition we show the following: For a fixed measurable function
µ0(~x) consider the class of data distributions P for which µ0(.) is a version of

their conditional mean function: E[Y | ~X] = µ( ~X)
P
= µo( ~X). In this class the

following holds:

µ0(.) is nonlinear =⇒ ∃P 1,P 2 : β(P 1) 6= β(P 2),
µ0(.) is linear =⇒ ∀P 1,P 2 : β(P 1) = β(P 2).

The linear case is trivial: if µ0( ~X) is linear, that is, µ0(~x) = β′~x for some β,
then β(P ) = β irrespective of P (d~x). The nonlinear case is proved as follows:
For any set of points ~x1, ...~xp+1 ∈ IRp+1 in general position and with 1 in the
first coordinate, there exists a unique linear function β′~x through the values
of µ0(~xi). Define P (d~x) by putting mass 1/(p+ 1) on each point; define the
conditional distribution P (dy | ~xi) as a point mass at y = µo(~xi); this defines P
such that β(P ) = β. Now, if µ0() is nonlinear, there exist two such sets of points
with differing linear functions β1

′~x and β2
′~x to match the values of µ0() on these

two sets; by following the preceding construction we obtain P 1 and P 2 such that
β(P 1) = β1 6= β2 = β(P 2).

imsart-sts ver. 2014/07/30 file: Buja_et_al_Conspiracy-v4.tex date: March 5, 2016



40 A. BUJA ET AL.

D.2 RAV Decomposition

Lemma D.2: RAV Decomposition.

RAV [β̂j ,m
2] = wσRAV [β̂j , σ

2] + wηRAV [β̂j , η
2],

where wσ :=
E[σ2( ~X)]

E[m2( ~X)]
, wη :=

E[η2( ~X)]

E[m2( ~X)]
, wσ + wη = 1.

D.3 Proof of the RAV -Range Proposition in Section 9.3.5

Proposition D.3: If E[X 2
j•] <∞, then

sup
m2

j

RAV [β̂j ,m
2
j ] =

P -maxX 2
j•

E[X 2
j•]

, inf
m2

j

RAV [β̂j ,m
2
j ] =

P -minX 2
j•

E[X 2
j•]

.

Here are some corollaries that follow from the proposition:

• If, for example, Xj• ∼ U [−1,+1] is uniformly distributed, then E[X 2
j•] =

1/3. Hence the upper bound on the RAV is 3 and, asymptotically, the usual
standard error will never be too short by more than a factor

√
3 ≈ 1.732.

• However, when E[X 2
j•] is very small compared to P -maxX 2

j•, that is, when
Xj• is highly concentrated around its mean 0, then this approximates the
case of an unbounded support and the worst-case RAV can be very large.

• If, on the other hand, E[X 2
j•] is very close to P -maxX 2

j• = c2, then Xj•
approximates a balanced two-point distribution at ±c, and the sandwich
and usual standard errors necessarily agree in the limit.

The result for the last case, a two-point balanced distribution, is intuitive because
here it is impossible to detect nonlinearity. Heteroskedasticity, however, is still
possible (different noise variances at ±c), but this does not matter because the
dependence of RAV is on X 2

j•, not Xj•, and X 2
j• has a one-point distribution at c2.

The RAV can only respond to heteroskedasticities that vary in X 2
j•.

The RAV is a functional of X 2
j• and f2

j (X 2
j•), suggesting simplified notation:

X2 for X 2
j•, f

2(X2) for f2
j (X 2

j•), and RAV [f2] for RAV [β̂j , f
2
j ]. Proposition D.3

is proved by the first lemma as applied to σ2
j (X

2
j•), and by the second lemma

as applied to η2
j (X

2
j•). The difference between the two cases is that nonlineari-

ties ηj(X
2
j•) is necessarily centered whereas for σ2

j (X
2
j•) there exists no such re-

quirement; the construction below requires in the centered case that P -min and
P -max of X 2

j• do not carry positive probability mass. This is a largely technical
condition because even for discrete predictors Xj the adjusted squared version
X 2
j• will have a continuous distribution if there exists just one other predictor

that is continuous and non-orthogonal (partly collinear) to Xj .

Lemma D.3.1: Assume E[X2] <∞.

(a) Define a one-parameter family f2
t :

f2
t (X2) :=

1[|X|≥t]

p(t)
, where p(t) := P [|X| ≥ t]
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for p(t) > 0. Then the following holds:

sup
t
RAV [f2

t ] =
P -maxX2

E[X2]
.

(b) Define a one-parameter family g2
t :

g2
t (X

2) :=
1[|X|≤t]

p̄(t)
, where p̄(t) := P [|X| ≤ t] .

Then the following holds:

inf
t
RAV [g2

t ] =
P -minX2

E[X2]
.

Proof of part (a): Preliminary observations:

• E[f2
t (X2)] = 1.

• E[f2
t (X2)X2] ≤ P -maxX2.

• P -maxX2 = supp(t)>0 t
2.

For p(t) > 0 we have

E
[
f2
t (X)X2

]
=

1

p(t)
E
[
1[|X|≥t]X

2
]
≥ 1

p(t)
p(t) t2 = t2,

hence suptE
[
f2
t (X)X2

]
= P -maxX2. �

Proof of part (b): Preliminary observations:

• E[g2
t (X

2)] = 1.

• E[g2
t (X

2)X2] ≥ P -minX2.

• P -minX2 = inf p̄(t)>0 t
2.

For p̄(t) > 0 we have:

E
[
g2
t (X)X2

]
=

1

p̄(t)
E
[
1[|X|≤t]X

2
]
≤ 1

p̄(t)
p̄(t) t2 = t2,

hence inftE
[
g2
t (X)X2

]
= P -minX2. �

Lemma D.3.2:

(a) Define a one-parameter family

ft(X
2) =

1[|X|≥t] − p(t)√
p(t)(1− p(t))

, where p(t) = P [|X| ≥ t] ,

for p(t)>0 and 1−p(t)>0. If p(t) is continuous at t=P -max |X|, that is,
P [|X| = P -max |X|] = 0, then

sup
t
RAV [f2

t ] =
P -maxX2

E[X2]
.
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(b) Define a one-parameter family

gt(X
2) =

1[|X|≤t] − p̄(t)√
p̄(t)(1− p̄(t))

, where p̄(t) = P [|X| ≤ t] ,

for p̄(t)>0 and 1−p̄(t)>0. If p̄(t) is continuous at t=P -min |X|, that is,
P [|X| = P -min |X|] = 0, then

inf
t
RAV [g2

t ] =
P -minX2

E[X2]
.

Proof of part (a): Preliminary observations:

• E[f2
t (X2)] = 1.

• E[f2
t (X2)X2] ≤ P -maxX2.

• P -maxX2 = sup 0<p(t)<1 t
2.

For p(t)>0 we have:

E
[
f2
t (X)X2

]
=

1

p(t)(1− p(t))
E
[(

1[|X|≥t] − p(t)
)2
X2
]

=
1

p(t)(1− p(t))
(
E
[
1[|X|≥t]X

2
]

(1− 2 p(t)) + p(t)2E[X2]
)

≥ 1

p(t)(1− p(t))
(
p(t) t2 (1− 2 p(t)) + p(t)2E[X2]

)
for p(t) ≤ 1

2

=
1

1− p(t)
(
t2 (1− 2 p(t)) + p(t)E[X2]

)
−→ P -maxX2

as t ↑ P -max |X| and hence p(t) ↓ 0. �

Proof of part (b): Preliminary observations:

• E[g2
t (X

2)] = 1.

• E[g2
t (X

2)X2] ≥ P -minX2.

• P -minX2 = inf 0<p̄(t)<1 t
2.

E
[
g2
t (X)2X2

]
=

1

p̄(t)(1− p̄(t))
E
[(

1[|X|≤t] − p̄(t)
)2
X2
]

=
1

p̄(t)(1− p̄(t))
(
E
[
1[|X|≤t]X

2(1− 2 p̄(t))
]

+ p̄(t)2E[X2]
)

≤ 1

p̄(t)(1− p̄(t))
(
p̄(t) t2 (1− 2 p̄(t)) + p̄(t)2E[X2]

)
for p̄(t) ≤ 1

2

=
1

1− p̄(t)
(
t2 (1− 2 p̄(t)) + p̄(t)E[X2]

)
−→ P -minX2

as t ↓ P -min |X| and hence p̄(t) ↓ 0. �
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D.4 Details for Figure 6

We write X instead of Xj• and assume it has a standard normal distribution,
X ∼ N(0, 1), whose density will be denoted by φ(x). In Figure 6 the base function
is, up to scale, as follows:

f(x) = exp

(
− t

2

x2

2

)
, t > −1.

These functions are normal densities up to normalization for t > 0, constant 1
for t = 0, and convex for t < 0. Conveniently, f(x)φ(x) and f2(x)φ(x) are both
normal densities (up to normalization) for t > −1:

f(x)φ(x) = s1 φs1(x), s1 = (1 + t/2)−1/2,

f2(x)φ(x) = s2 φs2(x), s2 = (1 + t)−1/2,

where we write φs(x) = φ(x/s)/s for scaled normal densities. Accordingly we
obtain the following moments:

E[f(X)] = s1E[ 1 |N(0, s1
2)] = s1 = (1 + t/2)−1/2,

E[f(X)X2] = s1E[X2|N(0, s1
2)] = s1

3 = (1 + t/2)−3/2,

E[f2(X)] = s2E[ 1 |N(0, s2
2)] = s2 = (1 + t)−1/2,

E[f2(X)X2] = s2E[X2|N(0, s2
2)] = s2

3 = (1 + t)−3/2,

and hence

RAV [β̂, f2] =
E[f2(X)X2]

E[f2(X)]E[X2]
= s2

2 = (1 + t)−1

Figure 6 shows the functions as follows: f(x)2/E[f2(X)] = f(x)2/s2.

D.5 Proof of Asymptotic Normality of ˆRAVj, Section 9.4.2

We will need notation for each observation’s population-adjusted regressors:
Xj• = (X1,j•, ..., XN,j•)

′ = Xj −X−jβ−j•. The following distinction is elementary
but important: The component variables of Xj• = (Xi,j•)i=1...N are i.i.d. as they
are population-adjusted, whereas the component variables of Xj•̂ = (Xi,j•̂)i=1...N

are dependent as they are sample-adjusted. As N → ∞ for fixed p, this depen-
dency disappears asymptotically, and we have for the empirical distribution of
the values {Xi,j•̂}i=1...N the obvious convergence in distribution:

{Xi,j•̂}i=1...N
D−→ Xj•

D
= Xi,j• (N →∞).

We recall (42) for reference in the following form:

(44) ˆRAVj =
1
N 〈(Y −Xβ̂)2,Xj•̂

2〉
1
N ‖Y −Xβ̂‖2

1
N ‖Xj•̂‖2

.

For the denominators it is easy to show that

(45)
1
N ‖Y −Xβ̂‖

2 P−→ E[ δ2 ],

1
N ‖Xj•̂‖2

P−→ E[X 2
j• ].
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For the numerator a CLT holds based on

1
N1/2 〈(Y −Xβ̂)2,Xj•̂

2〉 = 1
N1/2 〈(Y −Xβ)2,Xj•

2〉+OP (N−1/2).(46)

For a proof outline see Details below. It is therefore sufficient to show asymptotic
normality of 〈δ2,Xj•

2〉. Here are first and second moments:

E[ 1
N 〈δ

2,Xj•
2〉] = E[δ2X 2

j•] = E[δ2]E[X 2
j•],

V [ 1
N1/2 〈δ2,Xj•

2〉] = E[δ4Xj•
4]−E[δ2X 2

j•]
2 = E[δ4]E[Xj•

4]−E[δ2]2E[X 2
j•]

2.

The second equality on each line holds under the null hypothesis of independent
δ and ~X. For the variance one observes that we assume that {(Yi, ~Xi)}i=1...N to
be i.i.d. sampled pairs, hence {(δ2

i , Xi,j•
2)}i=1...N are N i.i.d. sampled pairs as

well. Using the denominator terms (45) and Slutsky’s theorem, we arrive at the
first version of the CLT for ˆRAVj :

N1/2 ( ˆRAVj − 1)
D−→ N

(
0,
E[ δ4]

E[ δ2]2
E[Xj•

4]

E[X 2
j•]

2
− 1

)

With the additional null assumption of normal noise we have E[ δ4] = 3E[ δ2]2,
and hence the second version of the CLT for ˆRAVj :

N1/2 ( ˆRAVj − 1)
D−→ N

(
0, 3

E[Xj•
4]

E[X 2
j•]

2
− 1

)
.

Details for the numerator (46), using notation of Sections C.1 and C.2, in
particular Xj• = Xj −X−jβ−j• and Xj•̂ = Xj −X−jβ̂−j•̂:
(47)

〈(Y −Xβ̂)2,Xj•̂
2〉 = 〈 ((Y −Xβ)−X(β̂ − β))2, (Xj• −X−j(β̂−j•̂ − β−j•))2 〉

= 〈 δ2 + (X(β̂ − β))2 − 2 δ (X(β̂ − β)),

Xj•
2 + (X−j(β̂−j•̂ − β̂−j•))2 − 2Xj•(X−j(β̂−j•̂ − β−j•)) 〉

= 〈 δ2,Xj•
2 〉+ ...

Among the 8 terms in “...”, each contains at least one subterm of the form β̂−β
or β̂−j•̂−β−j•, each being of order OP (N−1/2). We first treat the terms with just
one of these subterms to first power, of which there are only two, normalized by
N1/2:

1
N1/2 〈−2 δ (X(β̂ − β)), Xj•

2 〉 = −2
∑

k=0...p

(
1

N1/2

∑
i=1...N δiXi,kX

2
i,j•

)
(β̂j − βj)

=
∑

k=0...p OP (1)OP (N−1/2) = OP (N−1/2),

1
N1/2 〈 δ2, −2Xj•(X−j(β̂−j•̂ − β−j•)) 〉 = −2

∑
k(6=j)

(
1

N1/2

∑
i=1...N δ

2
iXi,j•Xi,k

)
(β̂−j•̂,k − β−j•,k)

=
∑

k(6=j) OP (1)OP (N−1/2) = OP (N−1/2).

The terms in the big parens are OP (1) because they are asymptotically normal.
This is so because they are centered under the null hypothesis that δi is indepen-
dent of the regressors ~Xi: In the first term we have

E[δiXi,kX
2
i,j•] = E[δi]E[Xi,kX

2
i,j•] = 0
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due to E[δi] = 0. In the second term we have

E[δ2
iXi,j•Xi,k] = E[δ2

i ]E[Xi,j•Xi,k] = 0

due to E[Xi,j•Xi,k] = 0 as k 6= j.
We proceed to the 6 terms in (47) that contain at least two β-subterms or one

β-subterm squared. For brevity we treat one term in detail and assume that the
reader will be convinced that the other 5 terms can be dealt with similarly. Here
is one such term, again scaled for CLT purposes:

1
N1/2 〈 (X(β̂ − β))2,Xj•

2 〉 =
∑

k,l=0...p

(
1
N

∑
i=1...N Xi,kXi,lX

2
i,j•

)
N1/2(β̂k − βk)(β̂l − βl)

=
∑

k,l=0...p const ·OP (1)OP (N−1/2) = OP (N−1/2).

The term in the parens converges in probability to E[Xi,kXi,lX
2
i,j•], accounting

for “const”; the term N1/2(β̂k − βk) is asymptotically normal and hence OP (1);
and the term (β̂l − βl) is OP (N−1/2) due to its CLT.
Details for the denominator terms (45): It is sufficient to consider the first
denominator term. Let H = X(X ′X)−1X ′ be the hat or projection matrix
for X.

1
N ‖Y −Xβ̂‖

2 = 1
N Y

′(I −H)Y

= 1
N

(
‖Y ‖2 − Y ′HY

)
= 1

N ‖Y ‖
2 −

(
1
N

∑
Yi ~Xi

′
)(

1
N

∑
~Xi

~Xi
′
)−1 (

1
N

∑
~XiYi

)
P−→ E[Y 2] − E[Y ~X]E[ ~X ~X ′]−1E[ ~XY ]

= E[Y 2]−E[Y ~X ′β]

= E[(Y − ~X ′β)2] due to E[(Y − ~X ′β) ~X] = 0

= E[ δ2].

The calculations are the same for the second denominator term, substituting Xj

for Y , X−j for X, Xj• for δ, and β−j• for β.
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APPENDIX E: NON-NORMALITY OF CONDITIONAL NULL

DISTRIBUTIONS OF ˆRAVJ

Fig 9. Permutation distributions of ˆRAVj for the LA Homeless Data

Fig 10. Permutation distributions of ˆRAVj for the Boston Housing Data
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